首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We propose a new method of nonparametric estimation which is based on locally constant smoothing with an adaptive choice of weights for every pair of data points. Some theoretical properties of the procedure are investigated. Then we demonstrate the performance of the method on some simulated univariate and bivariate examples and compare it with other nonparametric methods. Finally we discuss applications of this procedure to magnetic resonance and satellite imaging.  相似文献   

2.
In this article, we introduce a new method for modelling curves with dynamic structures, using a non-parametric approach formulated as a state space model. The non-parametric approach is based on the use of penalised splines, represented as a dynamic mixed model. This formulation can capture the dynamic evolution of curves using a limited number of latent factors, allowing an accurate fit with a small number of parameters. We also present a new method to determine the optimal smoothing parameter through an adaptive procedure, using a formulation analogous to a model of stochastic volatility (SV). The non-parametric state space model allows unifying different methods applied to data with a functional structure in finance. We present the advantages and limitations of this method through simulation studies and also by comparing its predictive performance with other parametric and non-parametric methods used in financial applications using data on the term structure of interest rates.  相似文献   

3.
We consider the use of smoothing splines for the adaptive modelling of dose–response relationships. A smoothing spline is a nonparametric estimator of a function that is a compromise between the fit to the data and the degree of smoothness and thus provides a flexible way of modelling dose–response data. In conjunction with decision rules for which doses to continue with after an interim analysis, it can be used to give an adaptive way of modelling the relationship between dose and response. We fit smoothing splines using the generalized cross‐validation criterion for deciding on the degree of smoothness and we use estimated bootstrap percentiles of the predicted values for each dose to decide upon which doses to continue with after an interim analysis. We compare this approach with a corresponding adaptive analysis of variance approach based upon new simulations of the scenarios previously used by the PhRMA Working Group on Adaptive Dose‐Ranging Studies. The results obtained for the adaptive modelling of dose–response data using smoothing splines are mostly comparable with those previously obtained by the PhRMA Working Group for the Bayesian Normal Dynamic Linear model (GADA) procedure. These methods may be useful for carrying out adaptations, detecting dose–response relationships and identifying clinically relevant doses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Summary.  Functional magnetic resonance imaging has become a standard technology in human brain mapping. Analyses of the massive spatiotemporal functional magnetic resonance imaging data sets often focus on parametric or non-parametric modelling of the temporal component, whereas spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurring of high curvature transitions between activated and non-activated regions of the brain. To improve spatial adaptivity, we introduce a class of inhomogeneous Markov random fields with stochastic interaction weights in a space-varying coefficient model. For given weights, the random field is conditionally Gaussian, but marginally it is non-Gaussian. Fully Bayesian inference, including estimation of weights and variance parameters, can be carried out through efficient Markov chain Monte Carlo simulation. Although motivated by the analysis of functional magnetic resonance imaging data, the methodological development is general and can also be used for spatial smoothing and regression analysis of areal data on irregular lattices. An application to stylized artificial data and to real functional magnetic resonance imaging data from a visual stimulation experiment demonstrates the performance of our approach in comparison with Gaussian and robustified non-Gaussian Markov random-field models.  相似文献   

5.
Functional regression models that relate functional covariates to a scalar response are becoming more common due to the availability of functional data and computational advances. We introduce a functional nonlinear model with a scalar response where the true parameter curve is monotone. Using the Newton-Raphson method within a backfitting procedure, we discuss a penalized least squares criterion for fitting the functional nonlinear model with the smoothing parameter selected using generalized cross validation. Connections between a nonlinear mixed effects model and our functional nonlinear model are discussed, thereby providing an additional model fitting procedure using restricted maximum likelihood for smoothing parameter selection. Simulated relative efficiency gains provided by a monotone parameter curve estimator relative to an unconstrained parameter curve estimator are presented. In addition, we provide an application of our model with data from ozonesonde measurements of stratospheric ozone in which the measurements are biased as a function of altitude.  相似文献   

6.
This article considers the adaptive lasso procedure for the accelerated failure time model with multiple covariates based on weighted least squares method, which uses Kaplan-Meier weights to account for censoring. The adaptive lasso method can complete the variable selection and model estimation simultaneously. Under some mild conditions, the estimator is shown to have sparse and oracle properties. We use Bayesian Information Criterion (BIC) for tuning parameter selection, and a bootstrap variance approach for standard error. Simulation studies and two real data examples are carried out to investigate the performance of the proposed method.  相似文献   

7.
Neuroimaging studies aim to analyze imaging data with complex spatial patterns in a large number of locations (called voxels) on a two-dimensional (2D) surface or in a 3D volume. Conventional analyses of imaging data include two sequential steps: spatially smoothing imaging data and then independently fitting a statistical model at each voxel. However, conventional analyses suffer from the same amount of smoothing throughout the whole image, the arbitrary choice of smoothing extent, and low statistical power in detecting spatial patterns. We propose a multiscale adaptive regression model (MARM) to integrate the propagation-separation (PS) approach (Polzehl and Spokoiny, 2000, 2006) with statistical modeling at each voxel for spatial and adaptive analysis of neuroimaging data from multiple subjects. MARM has three features: being spatial, being hierarchical, and being adaptive. We use a multiscale adaptive estimation and testing procedure (MAET) to utilize imaging observations from the neighboring voxels of the current voxel to adaptively calculate parameter estimates and test statistics. Theoretically, we establish consistency and asymptotic normality of the adaptive parameter estimates and the asymptotic distribution of the adaptive test statistics. Our simulation studies and real data analysis confirm that MARM significantly outperforms conventional analyses of imaging data.  相似文献   

8.
In non-parametric function estimation selection of a smoothing parameter is one of the most important issues. The performance of smoothing techniques depends highly on the choice of this parameter. Preferably the bandwidth should be determined via a data-driven procedure. In this paper we consider kernel estimators in a white noise model, and investigate whether locally adaptive plug-in bandwidths can achieve optimal global rates of convergence. We consider various classes of functions: Sobolev classes, bounded variation function classes, classes of convex functions and classes of monotone functions. We study the situations of pilot estimation with oversmoothing and without oversmoothing. Our main finding is that simple local plug-in bandwidth selectors can adapt to spatial inhomogeneity of the regression function as long as there are no local oscillations of high frequency. We establish the pointwise asymptotic distribution of the regression estimator with local plug-in bandwidth.  相似文献   

9.
We provide a common approach for studying several nonparametric estimators used for smoothing functional time series data. Linear filters based on different building assumptions are transformed into kernel functions via reproducing kernel Hilbert spaces. For each estimator, we identify a density function or second order kernel, from which a hierarchy of higher order estimators is derived. These are shown to give excellent representations for the currently applied symmetric filters. In particular, we derive equivalent kernels of smoothing splines in Sobolev and polynomial spaces. The asymmetric weights are obtained by adapting the kernel functions to the length of the various filters, and a theoretical and empirical comparison is made with the classical estimators used in real time analysis. The former are shown to be superior in terms of signal passing, noise suppression and speed of convergence to the symmetric filter.  相似文献   

10.
Roland Günther 《Statistics》2013,47(3):327-340
In the paper we introduce an adaptive procedure of the first order exponential smoothing. In this procedure we get a sequence of estimation converging in mean square to the unknown smoothing parameter and an asymptotically optimum prediction in the sense of the least square error. In case of breaks in the structure of time series we recommend a modification of the procedure.  相似文献   

11.
ABSTRACT

This article considers nonparametric regression problems and develops a model-averaging procedure for smoothing spline regression problems. Unlike most smoothing parameter selection studies determining an optimum smoothing parameter, our focus here is on the prediction accuracy for the true conditional mean of Y given a predictor X. Our method consists of two steps. The first step is to construct a class of smoothing spline regression models based on nonparametric bootstrap samples, each with an appropriate smoothing parameter. The second step is to average bootstrap smoothing spline estimates of different smoothness to form a final improved estimate. To minimize the prediction error, we estimate the model weights using a delete-one-out cross-validation procedure. A simulation study has been performed by using a program written in R. The simulation study provides a comparison of the most well known cross-validation (CV), generalized cross-validation (GCV), and the proposed method. This new method is straightforward to implement, and gives reliable performances in simulations.  相似文献   

12.
The income or expenditure-related data sets are often nonlinear, heteroscedastic, skewed even after the transformation, and contain numerous outliers. We propose a class of robust nonlinear models that treat outlying observations effectively without removing them. For this purpose, case-specific parameters and a related penalty are employed to detect and modify the outliers systematically. We show how the existing nonlinear models such as smoothing splines and generalized additive models can be robustified by the case-specific parameters. Next, we extend the proposed methods to the heterogeneous models by incorporating unequal weights. The details of estimating the weights are provided. Two real data sets and simulated data sets show the potential of the proposed methods when the nature of the data is nonlinear with outlying observations.  相似文献   

13.
A smoothing parameter inversely proportional to the square root of the true density is known to produce kernel estimates of the density having faster bias rate of convergence. We show that in the case of kernel-based nonparametric hazard rate estimation, a smoothing parameter inversely proportional to the square root of the true hazard rate leads to a mean square error rate of order n ?8/9, an improvement over the standard second order kernel. An adaptive version of such a procedure is considered and analyzed.  相似文献   

14.
Generalized additive mixed models are proposed for overdispersed and correlated data, which arise frequently in studies involving clustered, hierarchical and spatial designs. This class of models allows flexible functional dependence of an outcome variable on covariates by using nonparametric regression, while accounting for correlation between observations by using random effects. We estimate nonparametric functions by using smoothing splines and jointly estimate smoothing parameters and variance components by using marginal quasi-likelihood. Because numerical integration is often required by maximizing the objective functions, double penalized quasi-likelihood is proposed to make approximate inference. Frequentist and Bayesian inferences are compared. A key feature of the method proposed is that it allows us to make systematic inference on all model components within a unified parametric mixed model framework and can be easily implemented by fitting a working generalized linear mixed model by using existing statistical software. A bias correction procedure is also proposed to improve the performance of double penalized quasi-likelihood for sparse data. We illustrate the method with an application to infectious disease data and we evaluate its performance through simulation.  相似文献   

15.
Quantile regression is a technique to estimate conditional quantile curves. It provides a comprehensive picture of a response contingent on explanatory variables. In a flexible modeling framework, a specific form of the conditional quantile curve is not a priori fixed. This motivates a local parametric rather than a global fixed model fitting approach. A nonparametric smoothing estimator of the conditional quantile curve requires to balance between local curvature and stochastic variability. In this paper, we suggest a local model selection technique that provides an adaptive estimator of the conditional quantile regression curve at each design point. Theoretical results claim that the proposed adaptive procedure performs as good as an oracle which would minimize the local estimation risk for the problem at hand. We illustrate the performance of the procedure by an extensive simulation study and consider a couple of applications: to tail dependence analysis for the Hong Kong stock market and to analysis of the distributions of the risk factors of temperature dynamics.  相似文献   

16.
Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.  相似文献   

17.
Smoothing of noisy sample covariances is an important component in functional data analysis. We propose a novel covariance smoothing method based on penalized splines and associated software. The proposed method is a bivariate spline smoother that is designed for covariance smoothing and can be used for sparse functional or longitudinal data. We propose a fast algorithm for covariance smoothing using leave-one-subject-out cross-validation. Our simulations show that the proposed method compares favorably against several commonly used methods. The method is applied to a study of child growth led by one of coauthors and to a public dataset of longitudinal CD4 counts.  相似文献   

18.
Abstract.  This work proposes an extension of the functional principal components analysis (FPCA) or Karhunen–Loève expansion, which can take into account non-parametrically the effects of an additional covariate. Such models can also be interpreted as non-parametric mixed effect models for functional data. We propose estimators based on kernel smoothers and a data-driven selection procedure of the smoothing parameters based on a two-step cross-validation criterion. The conditional FPCA is illustrated with the analysis of a data set consisting of egg laying curves for female fruit flies. Convergence rates are given for estimators of the conditional mean function and the conditional covariance operator when the entire curves are collected. Almost sure convergence is also proven when one observes discretized noisy sample paths only. A simulation study allows us to check the good behaviour of the estimators.  相似文献   

19.
We study regression estimation when the explanatory variable is functional. Nonparametric estimates of the regression operator have been recently introduced. They depend on a smoothing factor which controls its behavior, and the aim of our work is to construct some data-driven criterion for choosing this smoothing parameter. The criterion can be formulated in terms of a functional version of cross-validation ideas. Under mild assumptions on the unknown regression operator, it is seen that this rule is asymptotically optimal. As by-products of this result, we state some asymptotic equivalences for several measures of accuracy for nonparametric estimate of the regression operator. We also present general inequalities for bounding moments of random sums involving functional variables. Finally, a short simulation study is carried out to illustrate the behavior of our method for finite samples.  相似文献   

20.
ABSTRACT

In this article we study the approximately unbiased multi-level pseudo maximum likelihood (MPML) estimation method for general multi-level modeling with sampling weights. We conduct a simulation study to determine the effect various factors have on the estimation method. The factors we included in this study are scaling method, size of clusters, invariance of selection, informativeness of selection, intraclass correlation, and variability of standardized weights. The scaling method is an indicator of how the weights are normalized on each level. The invariance of the selection is an indicator of whether or not the same selection mechanism is applied across clusters. The informativeness of the selection is an indicator of how biased the selection is. We summarize our findings and recommend a multi-stage procedure based on the MPML method that can be used in practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号