首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An asymptotic normality result is given for an adaptive trimmed likelihood estimator of location, which parallels the asymptotic normality result for the adaptive trimmed mean. The new result comes out of studying the adaptive trimmed likelihood estimator modelled parametrically by a normal family but then examining the behavior when the underlying distribution is in fact some F different from normal. The asymptotic variance of the adaptive estimator is equal to the asymptotic variance of the trimmed likelihood estimator at the optimal trimming proportion for the distribution F, subject to that trimming proportion being positive and F being suitably smooth.  相似文献   

3.
Abstract

The generalized variance is an important statistical indicator which appears in a number of statistical topics. It is a successful measure for multivariate data concentration. In this article, we established, in a closed form, the bias of the generalized variance maximum likelihood estimator of the Multinomial family. We also derived, with a complete proof, the uniformly minimum variance unbiased estimator (UMVU) for the generalized variance of this family. These results rely on explicit calculations, the completeness of the exponential family and the Lehmann–Scheffé theorem.  相似文献   

4.
This paper discusses the large sample theory of the two-stage Welsh's trimmed mean for the limited information simultaneous equations model. Besides having asymptotic normality, this trimmed mean, as the two-stage least squares estimator, is a generalized least squares estimator. It also acts as a robust Aitken estimator for the simultaneous equations model. Examples illustrate real data analysis and large sample inferences based on this trimmed mean.  相似文献   

5.
To perform regression analysis in high dimensions, lasso or ridge estimation are a common choice. However, it has been shown that these methods are not robust to outliers. Therefore, alternatives as penalized M-estimation or the sparse least trimmed squares (LTS) estimator have been proposed. The robustness of these regression methods can be measured with the influence function. It quantifies the effect of infinitesimal perturbations in the data. Furthermore, it can be used to compute the asymptotic variance and the mean-squared error (MSE). In this paper we compute the influence function, the asymptotic variance and the MSE for penalized M-estimators and the sparse LTS estimator. The asymptotic biasedness of the estimators make the calculations non-standard. We show that only M-estimators with a loss function with a bounded derivative are robust against regression outliers. In particular, the lasso has an unbounded influence function.  相似文献   

6.
Recently, several new robust multivariate estimators of location and scatter have been proposed that provide new and improved methods for detecting multivariate outliers. But for small sample sizes, there are no results on how these new multivariate outlier detection techniques compare in terms of p n , their outside rate per observation (the expected proportion of points declared outliers) under normality. And there are no results comparing their ability to detect truly unusual points based on the model that generated the data. Moreover, there are no results comparing these methods to two fairly new techniques that do not rely on some robust covariance matrix. It is found that for an approach based on the orthogonal Gnanadesikan–Kettenring estimator, p n can be very unsatisfactory with small sample sizes, but a simple modification gives much more satisfactory results. Similar problems were found when using the median ball algorithm, but a modification proved to be unsatisfactory. The translated-biweights (TBS) estimator generally performs well with a sample size of n≥20 and when dealing with p-variate data where p≤5. But with p=8 it can be unsatisfactory, even with n=200. A projection method as well the minimum generalized variance method generally perform best, but with p≤5 conditions where the TBS method is preferable are described. In terms of detecting truly unusual points, the methods can differ substantially depending on where the outliers happen to be, the number of outliers present, and the correlations among the variables.  相似文献   

7.
The first step in statistical analysis is the parameter estimation. In multivariate analysis, one of the parameters of interest to be estimated is the mean vector. In multivariate statistical analysis, it is usually assumed that the data come from a multivariate normal distribution. In this situation, the maximum likelihood estimator (MLE), that is, the sample mean vector, is the best estimator. However, when outliers exist in the data, the use of sample mean vector will result in poor estimation. So, other estimators which are robust to the existence of outliers should be used. The most popular robust multivariate estimator for estimating the mean vector is S-estimator with desirable properties. However, computing this estimator requires the use of a robust estimate of mean vector as a starting point. Usually minimum volume ellipsoid (MVE) is used as a starting point in computing S-estimator. For high-dimensional data computing, the MVE takes too much time. In some cases, this time is so large that the existing computers cannot perform the computation. In addition to the computation time, for high-dimensional data set the MVE method is not precise. In this paper, a robust starting point for S-estimator based on robust clustering is proposed which could be used for estimating the mean vector of the high-dimensional data. The performance of the proposed estimator in the presence of outliers is studied and the results indicate that the proposed estimator performs precisely and much better than some of the existing robust estimators for high-dimensional data.  相似文献   

8.
We consider the problem of choosing among a class of possible estimators by selecting the estimator with the smallest bootstrap estimate of finite sample variance. This is an alternative to using cross-validation to choose an estimator adaptively. The problem of a confidence interval based on such an adaptive estimator is considered. We illustrate the ideas by applying the method to the problem of choosing the trimming proportion of an adaptive trimmed mean. It is shown that a bootstrap adaptive trimmed mean is asymptotically normal with an asymptotic variance equal to the smallest among trimmed means. The asymptotic coverage probability of a bootstrap confidence interval based on such adaptive estimators is shown to have the nominal level. The intervals based on the asymptotic normality of the estimator share the same asymptotic result, but have poor small-sample properties compared to the bootstrap intervals. A small-sample simulation demonstrates that bootstrap adaptive trimmed means adapt themselves rather well even for samples of size 10.  相似文献   

9.
We derive the ?1-limit of trimmed sums of order statistics from location-scale distributions satisfying certain assumptions. Based on this limit, an approximation to the asymptotic variance of a Best-Asymptotic-Normal (BAN) estimator for the location parameter is developed. Associated formulae are derived for four location-scale distributions commonly used in lifetime data analysis. The approximation is analyzed via the properties of the approximating function and by comparison to the exact values for a special case. Applications are illustrated by applying the approximation to comparing location parameters and to selecting the population with the largest location parameter, using censored samples from location-scale populations.  相似文献   

10.
An asymptotic expansion of the variance of the uniformly minimum variance unbiased estimator of a class of parameters of the multivariate lognormal distribution is considered. It is obtained by some calculations of the zonal polynomials. Then it is compared with an asymptotic mean square error of the maximum likelihood estimator of the same parameter.  相似文献   

11.
A class of trimmed linear conditional estimators based on regression quantiles for the linear regression model is introduced. This class serves as a robust analogue of non-robust linear unbiased estimators. Asymptotic analysis then shows that the trimmed least squares estimator based on regression quantiles ( Koenker and Bassett ( 1978 ) ) is the best in this estimator class in terms of asymptotic covariance matrices. The class of trimmed linear conditional estimators contains the Mallows-type bounded influence trimmed means ( see De Jongh et al ( 1988 ) ) and trimmed instrumental variables estimators. A large sample methodology based on trimmed instrumental variables estimator for confidence ellipsoids and hypothesis testing is also provided.  相似文献   

12.
In this paper, a new estimator combined estimator (CE) is proposed for estimating the finite population mean ¯ Y N in simple random sampling assuming a long-tailed symmetric super-population model. The efficiency and robustness properties of the CE is compared with the widely used and well-known estimators of the finite population mean ¯ Y N by Monte Carlo simulation. The parameter estimators considered in this study are the classical least squares estimator, trimmed mean, winsorized mean, trimmed L-mean, modified maximum-likelihood estimator, Huber estimator (W24) and the non-parametric Hodges–Lehmann estimator. The mean square error criteria are used to compare the performance of the estimators. We show that the CE is overall more efficient than the other estimators. The CE is also shown to be more robust for estimating the finite population mean ¯ Y N , since it is insensitive to outliers and to misspecification of the distribution. We give a real life example.  相似文献   

13.
This paper introduces a multivariate parallelogram that can play the role of the univariate quantile in the location model, and uses it to define a multivariate trimmed mean. It assesses the asymptotic efficiency of the proposed multivariate trimmed mean by its asymptotic variance and by Monte Carlo simulation.  相似文献   

14.
We propose a strongly root-n consistent simulation-based estimator for the generalized linear mixed models. This estimator is constructed based on the first two marginal moments of the response variables, and it allows the random effects to have any parametric distribution (not necessarily normal). Consistency and asymptotic normality for the proposed estimator are derived under fairly general regularity conditions. We also demonstrate that this estimator has a bounded influence function and that it is robust against data outliers. A bias correction technique is proposed to reduce the finite sample bias in the estimation of variance components. The methodology is illustrated through an application to the famed seizure count data and some simulation studies.  相似文献   

15.
A nonparametric measure of interclass correlation is considered and its unbiased estimator and a test based on the estimator are studied. Hie measure is an analogue of the Kendall's measure of dependence. It is shown that the variance of the estimator is small and the information loss of the test based on the estimator is not serious relative to a standard parametric test in the sense of the Pitman asymptotic relative efficiency. Furthermore, the approximate variance of the estimator is given in the normal model.  相似文献   

16.
Consider the problem of estimating the common location parameter of two exponential populations using record data when the scale parameters are unknown. We derive the maximum likelihood estimator (MLE), the modified maximum likelihood estimator (MMLE) and the uniformly minimum variance unbiased estimator (UMVUE) of the common location parameter. Further, we derive a general result for inadmissibility of an equivariant estimator under the scaled-squared error loss function. Using this result, we conclude that the MLE and the UMVUE are inadmissible and better estimators are provided. A simulation study is conducted for comparing the performances of various competing estimators.  相似文献   

17.
On some data oriented robust estimation procedures for means   总被引:3,自引:0,他引:3  
Data oriented to estimate means is very important for large data sets. Since outliers usually occur, the trimmed mean is a robust estimator of locations. After building a reasonable linear model to explain the relationship between the suitably transformed symmetric data and the approximately standardized normal statistics, we find the trimmed proportion based on the smallest variance of trimmed means. The related statistical inference is also discussed. An empirical study based on an annual survey about inbound visitors in the Taiwan area is used to achieve our goal in deciding the trimmed proportion. In this study, we propose a complete procedure to attain the goal.  相似文献   

18.
Many directional data such as wind directions can be collected extremely easily so that experiments typically yield a huge number of data points that are sequentially collected. To deal with such big data, the traditional nonparametric techniques rapidly require a lot of time to be computed and therefore become useless in practice if real time or online forecasts are expected. In this paper, we propose a recursive kernel density estimator for directional data which (i) can be updated extremely easily when a new set of observations is available and (ii) keeps asymptotically the nice features of the traditional kernel density estimator. Our methodology is based on Robbins–Monro stochastic approximations ideas. We show that our estimator outperforms the traditional techniques in terms of computational time while being extremely competitive in terms of efficiency with respect to its competitors in the sequential context considered here. We obtain expressions for its asymptotic bias and variance together with an almost sure convergence rate and an asymptotic normality result. Our technique is illustrated on a wind dataset collected in Spain. A Monte‐Carlo study confirms the nice properties of our recursive estimator with respect to its non‐recursive counterpart.  相似文献   

19.
In this paper, we study the robustness properties of several procedures for the joint estimation of shape and scale in a generalized Pareto model. The estimators that we primarily focus upon, most bias robust estimator (MBRE) and optimal MSE-robust estimator (OMSE), are one-step estimators distinguished as optimally robust in the shrinking neighbourhood setting; that is, they minimize the maximal bias, respectively, on such a specific neighbourhood, the maximal mean squared error (MSE). For their initialization, we propose a particular location–dispersion estimator, MedkMAD, which matches the population median and kMAD (an asymmetric variant of the median of absolute deviations) against the empirical counterparts. These optimally robust estimators are compared to the maximum-likelihood, skipped maximum-likelihood, Cramér–von-Mises minimum distance, method-of-medians, and Pickands estimators. To quantify their deviation from robust optimality, for each of these suboptimal estimators, we determine the finite-sample breakdown point and the influence function, as well as the statistical accuracy measured by asymptotic bias, variance, and MSE – all evaluated uniformly on shrinking neighbourhoods. These asymptotic findings are complemented by an extensive simulation study to assess the finite-sample behaviour of the considered procedures. The applicability of the procedures and their stability against outliers are illustrated for the Danish fire insurance data set from the package evir.  相似文献   

20.
Mixtures of factor analyzers (MFAs) have been popularly used to cluster the high-dimensional data. However, the traditional estimation method is based on the normality assumptions of random terms and thus is sensitive to outliers. In this article, we introduce a robust estimation procedure of MFAs using the trimmed likelihood estimator. We use a simulation study and a real data application to demonstrate the robustness of the trimmed estimation procedure and compare it with the traditional normality-based maximum likelihood estimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号