首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylmercury (Me-Hg) is widely distributed through freshwater and saltwater food chains and human consumption of fish and shellfish has lead to widespread exposure. Both the U.S. EPA Reference Dose (0.3 μg/kg/day) and the FAO/WHO Permissible Tolerable Weekly Intake (3.3 μg/kg/week) are currently based on the prevention of paraesthesia in adult and older children. However, Me-Hg exposure in utero is known to result in a range of developmental neurologic effects including clinical CNS symptoms and delayed onset of walking. Based on a critical review of developmental toxicity data from human and animal studies, it is concluded that current guidelines for the prevention of paraesthesia are not adequate to address developmental effects. A dose of 0.07 μ/kg/day is suggested as the best estimate of a potential reference dose for developmental effects. Data on nationwide fish consumption rates and Me-Hg levels in fish/seafood weighted by proportion of the catch intended for human consumption are analyzed in a Monte Carlo simulation to derive a probability distribution of background Me-Hg exposure. While various uncertainties in the toxicologic and exposure data limit the precision with which health risk can be estimated, this analysis suggests that at current levels of Me-Hg exposure, a significant fraction of women of childbearing age have exposures above this suggested reference dose.  相似文献   

2.
Benchmark dose (BMD) analysis was used to estimate an inhalation benchmark concentration for styrene neurotoxicity. Quantal data on neuropsychologic test results from styrene-exposed workers [Mutti et al. (1984). American Journal of Industrial Medicine, 5, 275-286] were used to quantify neurotoxicity, defined as the percent of tested workers who responded abnormally to > or = 1, > or = 2, or > or = 3 out of a battery of eight tests. Exposure was based on previously published results on mean urinary mandelic- and phenylglyoxylic acid levels in the workers, converted to air styrene levels (15, 44, 74, or 115 ppm). Nonstyrene-exposed workers from the same region served as a control group. Maximum-likelihood estimates (MLEs) and BMDs at 5 and 10% response levels of the exposed population were obtained from log-normal analysis of the quantal data. The highest MLE was 9 ppm (BMD = 4 ppm) styrene and represents abnormal responses to > or = 3 tests by 10% of the exposed population. The most health-protective MLE was 2 ppm styrene (BMD = 0.3 ppm) and represents abnormal responses to > or = 1 test by 5% of the exposed population. A no observed adverse effect level/lowest observed adverse effect level (NOAEL/LOAEL) analysis of the same quantal data showed workers in all styrene exposure groups responded abnormally to > or = 1, > or = 2, or > or = 3 tests, compared to controls, and the LOAEL was 15 ppm. A comparison of the BMD and NOAEL/LOAEL analyses suggests that at air styrene levels below the LOAEL, a segment of the worker population may be adversely affected. The benchmark approach will be useful for styrene noncancer risk assessment purposes by providing a more accurate estimate of potential risk that should, in turn, help to reduce the uncertainty that is a common problem in setting exposure levels.  相似文献   

3.
Formaldehyde induced squamous-cell carcinomas in the nasal passages of F344 rats in two inhalation bioassays at exposure levels of 6 ppm and above. Increases in rates of cell proliferation were measured by T. M. Monticello and colleagues at exposure levels of 0.7 ppm and above in the same tissues from which tumors arose. A risk assessment for formaldehyde was conducted at the CIIT Centers for Health Research, in collaboration with investigators from Toxicological Excellence in Risk Assessment (TERA) and the U.S. Environmental Protection Agency (U.S. EPA) in 1999. Two methods for dose-response assessment were used: a full biologically based modeling approach and a statistically oriented analysis by benchmark dose (BMD) method. This article presents the later approach, the purpose of which is to combine BMD and pharmacokinetic modeling to estimate human cancer risks from formaldehyde exposure. BMD analysis was used to identify points of departure (exposure levels) for low-dose extrapolation in rats for both tumor and the cell proliferation endpoints. The benchmark concentrations for induced cell proliferation were lower than for tumors. These concentrations were extrapolated to humans using two mechanistic models. One model used computational fluid dynamics (CFD) alone to determine rates of delivery of inhaled formaldehyde to the nasal lining. The second model combined the CFD method with a pharmacokinetic model to predict tissue dose with formaldehyde-induced DNA-protein cross-links (DPX) as a dose metric. Both extrapolation methods gave similar results, and the predicted cancer risk in humans at low exposure levels was found to be similar to that from a risk assessment conducted by the U.S. EPA in 1991. Use of the mechanistically based extrapolation models lends greater certainty to these risk estimates than previous approaches and also identifies the uncertainty in the measured dose-response relationship for cell proliferation at low exposure levels, the dose-response relationship for DPX in monkeys, and the choice between linear and nonlinear methods of extrapolation as key remaining sources of uncertainty.  相似文献   

4.
We review approaches for characterizing “peak” exposures in epidemiologic studies and methods for incorporating peak exposure metrics in dose–response assessments that contribute to risk assessment. The focus was on potential etiologic relations between environmental chemical exposures and cancer risks. We searched the epidemiologic literature on environmental chemicals classified as carcinogens in which cancer risks were described in relation to “peak” exposures. These articles were evaluated to identify some of the challenges associated with defining and describing cancer risks in relation to peak exposures. We found that definitions of peak exposure varied considerably across studies. Of nine chemical agents included in our review of peak exposure, six had epidemiologic data used by the U.S. Environmental Protection Agency (US EPA) in dose–response assessments to derive inhalation unit risk values. These were benzene, formaldehyde, styrene, trichloroethylene, acrylonitrile, and ethylene oxide. All derived unit risks relied on cumulative exposure for dose–response estimation and none, to our knowledge, considered peak exposure metrics. This is not surprising, given the historical linear no‐threshold default model (generally based on cumulative exposure) used in regulatory risk assessments. With newly proposed US EPA rule language, fuller consideration of alternative exposure and dose–response metrics will be supported. “Peak” exposure has not been consistently defined and rarely has been evaluated in epidemiologic studies of cancer risks. We recommend developing uniform definitions of “peak” exposure to facilitate fuller evaluation of dose response for environmental chemicals and cancer risks, especially where mechanistic understanding indicates that the dose response is unlikely linear and that short‐term high‐intensity exposures increase risk.  相似文献   

5.
6.
Model averaging (MA) has been proposed as a method of accounting for model uncertainty in benchmark dose (BMD) estimation. The technique has been used to average BMD dose estimates derived from dichotomous dose-response experiments, microbial dose-response experiments, as well as observational epidemiological studies. While MA is a promising tool for the risk assessor, a previous study suggested that the simple strategy of averaging individual models' BMD lower limits did not yield interval estimators that met nominal coverage levels in certain situations, and this performance was very sensitive to the underlying model space chosen. We present a different, more computationally intensive, approach in which the BMD is estimated using the average dose-response model and the corresponding benchmark dose lower bound (BMDL) is computed by bootstrapping. This method is illustrated with TiO(2) dose-response rat lung cancer data, and then systematically studied through an extensive Monte Carlo simulation. The results of this study suggest that the MA-BMD, estimated using this technique, performs better, in terms of bias and coverage, than the previous MA methodology. Further, the MA-BMDL achieves nominal coverage in most cases, and is superior to picking the "best fitting model" when estimating the benchmark dose. Although these results show utility of MA for benchmark dose risk estimation, they continue to highlight the importance of choosing an adequate model space as well as proper model fit diagnostics.  相似文献   

7.
A method to determine how much reduction in public exposure to power frequency magnetic fields can be obtained for different levels of investment is presented. Which if any "effects function" best describes the relationship between field exposure and biological effect is uncertain at this time. Also, in a particular context such as construction of new transmission lines there are a variety of different technologies which might be used to reduce exposure. We describe and demonstrate a method by which exposure reduction supply curves (i.e., the cost of purchasing different amounts of exposure reduction given various mitigation options) can be estimated parametrically for different exposure conditions and effects functions, and we display illustrative results.  相似文献   

8.
The use of benchmark dose (BMD) calculations for dichotomous or continuous responses is well established in the risk assessment of cancer and noncancer endpoints. In some cases, responses to exposure are categorized in terms of ordinal severity effects such as none, mild, adverse, and severe. Such responses can be assessed using categorical regression (CATREG) analysis. However, while CATREG has been employed to compare the benchmark approach and the no‐adverse‐effect‐level (NOAEL) approach in determining a reference dose, the utility of CATREG for risk assessment remains unclear. This study proposes a CATREG model to extend the BMD approach to ordered categorical responses by modeling severity levels as censored interval limits of a standard normal distribution. The BMD is calculated as a weighted average of the BMDs obtained at dichotomous cutoffs for each adverse severity level above the critical effect, with the weights being proportional to the reciprocal of the expected loss at the cutoff under the normal probability model. This approach provides a link between the current BMD procedures for dichotomous and continuous data. We estimate the CATREG parameters using a Markov chain Monte Carlo simulation procedure. The proposed method is demonstrated using examples of aldicarb and urethane, each with several categories of severity levels. Simulation studies comparing the BMD and BMDL (lower confidence bound on the BMD) using the proposed method to the correspondent estimates using the existing methods for dichotomous and continuous data are quite compatible; the difference is mainly dependent on the choice of cutoffs for the severity levels.  相似文献   

9.
《Risk analysis》2018,38(6):1143-1153
The benchmark dose (BMD) approach is increasingly used as a preferred approach for dose–effect analysis, but standard experimental designs are generally not optimized for BMD analysis. The aim of this study was to evaluate how the use of unequally sized dose groups affects the quality of BMD estimates in toxicity testing, with special consideration of the total burden of animal distress. We generated continuous dose–effect data by Monte Carlo simulation using two dose–effect curves based on endpoints with different shape parameters. Eighty‐five designs, each with four dose groups of unequal size, were examined in scenarios ranging from low‐ to high‐dose placements and with a total number of animals set to 40, 80, or 200. For each simulation, a BMD value was estimated and compared with the “true” BMD. In general, redistribution of animals from higher to lower dose groups resulted in an improved precision of the calculated BMD value as long as dose placements were high enough to detect a significant trend in the dose–effect data with sufficient power. The improved BMD precision and the associated reduction of the number of animals exposed to the highest dose, where chemically induced distress is most likely to occur, are favorable for the reduction and refinement principles. The result thereby strengthen BMD‐aligned design of experiments as a means for more accurate hazard characterization along with animal welfare improvements.  相似文献   

10.
The benchmark dose (BMD) is an exposure level that would induce a small risk increase (BMR level) above the background. The BMD approach to deriving a reference dose for risk assessment of noncancer effects is advantageous in that the estimate of BMD is not restricted to experimental doses and utilizes most available dose-response information. To quantify statistical uncertainty of a BMD estimate, we often calculate and report its lower confidence limit (i.e., BMDL), and may even consider it as a more conservative alternative to BMD itself. Computation of BMDL may involve normal confidence limits to BMD in conjunction with the delta method. Therefore, factors, such as small sample size and nonlinearity in model parameters, can affect the performance of the delta method BMDL, and alternative methods are useful. In this article, we propose a bootstrap method to estimate BMDL utilizing a scheme that consists of a resampling of residuals after model fitting and a one-step formula for parameter estimation. We illustrate the method with clustered binary data from developmental toxicity experiments. Our analysis shows that with moderately elevated dose-response data, the distribution of BMD estimator tends to be left-skewed and bootstrap BMDL s are smaller than the delta method BMDL s on average, hence quantifying risk more conservatively. Statistically, the bootstrap BMDL quantifies the uncertainty of the true BMD more honestly than the delta method BMDL as its coverage probability is closer to the nominal level than that of delta method BMDL. We find that BMD and BMDL estimates are generally insensitive to model choices provided that the models fit the data comparably well near the region of BMD. Our analysis also suggests that, in the presence of a significant and moderately strong dose-response relationship, the developmental toxicity experiments under the standard protocol support dose-response assessment at 5% BMR for BMD and 95% confidence level for BMDL.  相似文献   

11.
Carcinogenicity Studies on MTBE: Critical Review and Interpretation   总被引:5,自引:0,他引:5  
Chronic inhalation of toxic concentrations of MTBE caused renal tubular cell neoplasms in male Fischer 344 rats and hepatocellular adenomas in female CD-1 mice. In Sprague-Dawley rats the oral administration of MTBE was associated with increased incidences of Leydig cell tumors and of lymphomas and leukemias (combined) in males and females, respectively. Neither lymphomas nor leukemias were individually increased in treated females. Leydig cell tumors are common in rats and do not predict human responses to drugs and chemicals. Neither MTBE nor its metabolite, t -butyl alcohol, possess mutagenic potential and a second metabolite, formaldehyde, is mutagenic in vitro but in vivo results are equivocal. MTBE-induced neoplasms are most likely produced through a nongenetic mechanism which requires chronic exposure to toxic doses. Because of the intense odor (and taste) of MTBE, humans will not tolerate either air or water concentrations sufficient to produce the cytotoxic precursors required to promote cellular proliferation.  相似文献   

12.
Legionnaires' disease (LD), first reported in 1976, is an atypical pneumonia caused by bacteria of the genus Legionella, and most frequently by L. pneumophila (Lp). Subsequent research on exposure to the organism employed various animal models, and with quantitative microbial risk assessment (QMRA) techniques, the animal model data may provide insights on human dose-response for LD. This article focuses on the rationale for selection of the guinea pig model, comparison of the dose-response model results, comparison of projected low-dose responses for guinea pigs, and risk estimates for humans. Based on both in vivo and in vitro comparisons, the guinea pig (Cavia porcellus) dose-response data were selected for modeling human risk. We completed dose-response modeling for the beta-Poisson (approximate and exact), exponential, probit, logistic, and Weibull models for Lp inhalation, mortality, and infection (end point elevated body temperature) in guinea pigs. For mechanistic reasons, including low-dose exposure probability, further work on human risk estimates for LD employed the exponential and beta-Poisson models. With an exposure of 10 colony-forming units (CFU) (retained dose), the QMRA model predicted a mild infection risk of 0.4 (as evaluated by seroprevalence) and a clinical severity LD case (e.g., hospitalization and supportive care) risk of 0.0009. The calculated rates based on estimated human exposures for outbreaks used for the QMRA model validation are within an order of magnitude of the reported LD rates. These validation results suggest the LD QMRA animal model selection, dose-response modeling, and extension to human risk projections were appropriate.  相似文献   

13.
The neurotoxic effects of chemical agents are often investigated in controlled studies on rodents, with binary and continuous multiple endpoints routinely collected. One goal is to conduct quantitative risk assessment to determine safe dose levels. Yu and Catalano (2005) describe a method for quantitative risk assessment for bivariate continuous outcomes by extending a univariate method of percentile regression. The model is likelihood based and allows for separate dose‐response models for each outcome while accounting for the bivariate correlation. The approach to benchmark dose (BMD) estimation is analogous to that for quantal data without having to specify arbitrary cutoff values. In this article, we evaluate the behavior of the BMD relative to background rates, sample size, level of bivariate correlation, dose‐response trend, and distributional assumptions. Using simulations, we explore the effects of these factors on the resulting BMD and BMDL distributions. In addition, we illustrate our method with data from a neurotoxicity study of parathion exposure in rats.  相似文献   

14.
Lead is a recognized neurotoxicant, but estimating effects at the lowest measurable levels is difficult. An international pooled analysis of data from seven cohort studies reported an inverse and supra‐linear relationship between blood lead concentrations and IQ scores in children. The lack of a clear threshold presents a challenge to the identification of an acceptable level of exposure. The benchmark dose (BMD) is defined as the dose that leads to a specific known loss. As an alternative to elusive thresholds, the BMD is being used increasingly by regulatory authorities. Using the pooled data, this article presents BMD results and applies different statistical techniques in the analysis of multistudy data. The calculations showed only a limited variation between studies in the steepness of the dose‐response functions. BMD results were quite robust to modeling assumptions with the best fitting models yielding lower confidence limits (BMDLs) of about 0.1–1.0 μ g/dL for the dose leading to a loss of one IQ point. We conclude that current allowable blood lead concentrations need to be lowered and further prevention efforts are needed to protect children from lead toxicity.  相似文献   

15.
The BMD (benchmark dose) method that is used in risk assessment of chemical compounds was introduced by Crump (1984) and is based on dose-response modeling. To take uncertainty in the data and model fitting into account, the lower confidence bound of the BMD estimate (BMDL) is suggested to be used as a point of departure in health risk assessments. In this article, we study how to design optimum experiments for applying the BMD method for continuous data. We exemplify our approach by considering the class of Hill models. The main aim is to study whether an increased number of dose groups and at the same time a decreased number of animals in each dose group improves conditions for estimating the benchmark dose. Since Hill models are nonlinear, the optimum design depends on the values of the unknown parameters. That is why we consider Bayesian designs and assume that the parameter vector has a prior distribution. A natural design criterion is to minimize the expected variance of the BMD estimator. We present an example where we calculate the value of the design criterion for several designs and try to find out how the number of dose groups, the number of animals in the dose groups, and the choice of doses affects this value for different Hill curves. It follows from our calculations that to avoid the risk of unfavorable dose placements, it is good to use designs with more than four dose groups. We can also conclude that any additional information about the expected dose-response curve, e.g., information obtained from studies made in the past, should be taken into account when planning a study because it can improve the design.  相似文献   

16.
Although environmental equity research has focused primarily on chronic pollution sources, recent advances in environmental modeling and geographic information systems (GIS) provide a foundation for developing measures that can be used to evaluate differential exposure to acute pollution events. This article describes a methodology that uses facility-specific information to develop a risk surface representing the spatial distribution of accidental exposure to hazardous substances in a study area. Environmental pollution models recommended by the U.S. Environmental Protection Agency were used in conjunction with GIS software to achieve this objective. The methodology was implemented in a large metropolitan region (Hillsborough County, Florida) to examine disproportionate exposure to worst-case releases of extremely hazardous substances. The environmental inequity hypothesis was investigated by directly comparing the distribution of potential exposures within each racial (non-White versus White) and income (below poverty versus above poverty) subgroup. The results indicate that a significantly large proportion of both non-White and impoverished individuals resided in areas potentially exposed to multiple accidental releases.  相似文献   

17.
This study illustrates the effect of virus detection methods on estimates of risks of infection of biosolids-associated viruses for occupational workers and residential population during a hypothetical exposure of biosolids. Five gastroenteritis-associated human enteric viruses--enteroviruses (echovirus-12, enteroviruse types 68-71), adenoviruses, rotaviruses, and noroviruses genotype--I-were considered to represent human enteric viruses for risk estimation purposes. Ingested viral doses were calculated using literature-reported total infectious virus concentrations (based on BGM and A549 cell lines) and genome copies (GCs) in Michigan dewatered and class B biosolids. Cell-line-based infectivity parameters (i.e., ratio of total infectious virus concentration to GCs) were developed for different viruses in biosolids to use GCs for calculating ingested viral dose, addressing the issue of integration of molecular methods with biosolids-based virus risk assessment. Use of virus concentrations from molecular methods (with and without using cell-line-based infectivity parameter) resulted in higher risk estimates than culture methods, indicating the effect of the virus detection method on risk estimates. Further, use of virus concentrations from A549 cell lines resulted in higher risk estimates compared to those from BGM cell lines, suggesting the need for a proper choice of cell lines in determining infectious viral dose. The Monte Carlo uncertainty analyses of estimates for risk of infection due to enteroviruses showed that enteroviruses concentration was the most important parameter influencing risk estimates, indicating the need for reducing associated uncertainty. More work is required to develop cell-line-based infectivity parameters for different virus concentration levels and sample matrix types using a cut-off-based approach.  相似文献   

18.
A mechanistic model and associated procedures are proposed for cancer risk assessment of genotoxic chemicals. As previously shown for ionizing radiation, a linear multiplicative model was found to be compatible with published experimental data for ethylene oxide, acrylamide, and butadiene. The validity of this model was anticipated in view of the multiplicative interaction of mutation with inherited and acquired growth-promoting conditions. Concurrent analysis led to rejection of an additive model (i.e. the model commonly applied for cancer risk assessment). A reanalysis of data for radiogenic cancer in mouse, dog and man shows that the relative risk coefficient is approximately the same (0.4 to 0.5 percent per rad) for tumours induced in the three species.Doses in vivo, defined as the time-integrated concentrations of ultimate mutagens, expressed in millimol × kg–1 × h (mMh) are, like radiation doses given in Gy or rad, proportional to frequencies of potentially mutagenic events. The radiation dose equivalents of chemical doses are, calculated by multiplying chemical doses (in mMh) with the relative genotoxic potencies (in rad × mMh–1) determined in vitro. In this way the relative cancer incidence increments in rats and mice exposed to ethylene oxide were shown to be about 0.4 percent per rad-equivalent, in agreement with the data for radiogenic cancer.Our analyses suggest that values of the relative risk coefficients for genotoxic chemicals are independent of species and that relative cancer risks determined in animal tests apply also to humans. If reliable animal test data are not available, cancer risks may be estimated by the relative potency. In both cases exposure dose/target dose relationships, the latter via macromolecule adducts, should be determined.  相似文献   

19.
An estimation of the human lung cancer “unit risk” from diesel engine particulate emissions has been made using a comparative potency approach. This approach involves evaluating the tumorigenic and mutagenic potencies of the particulates from four diesel and one gasoline engine in relation to other combustion and pyrolysis products (coke oven, roofing tar, and cigarette smoke) that cause lung cancer in humans. The unit cancer risk is predicated on the linear nonthreshold extrapolation model and is the individual lifetime excess lung cancer risk from continuous exposure to 1 μg carcinogen per m3 inhaled air. The human lung cancer unit risks obtained from the epidemiologic data for coke oven workers, roofing tar applicators, and cigarette smokers were, respectively, 9.3 × 10?4, 3.6 × 10?4, and 2.2 × 10?6 per μg particulate organics per m3 air. The comparative potencies of these three materials and the diesel and gasoline engine exhaust particulates (as organic extracts) were evaluated by in vivo tumorigenicity bioassays involving skin initiation and skin carcinogenicity in SENCAR mice and by the in vitro bioassays that proved suitable for this analysis: Ames Salmonella microsome bioassay, L5178Y mouse lymphoma cell mutagenesis bioassay, and sister chromatid exchange bioassay in Chinese hamster ovary cells. The relative potencies of the coke oven, roofing tar, and cigarette smoke emissions, as determined by the mouse skin initiation assay, were within a factor of 2 of those determined using the epidemiologic data. The relative potencies, from the in vitro bioassays as compared to the human data, were similar for coke oven and roofing tar, but for the cigarette smoke condensate the in vitro tests predicted a higher relative potency. The mouse skin initiation bioassay was used to determine the unit lung cancer risk for the most potent of the diesel emissions. Based on comparisons with coke oven, roofing tar, and cigarette smoke, the unit cancer risk averaged 4.4 × 10?4. The unit lung cancer risks for the other, less potent motor-vehicle emissions were determined from their comparative potencies relative to the most potent diesel using three in vitro bioassays. There was a high correlation between the in vitro and in vivo bioassays in their responses to the engine exhaust particulate extracts. The unit lung cancer risk per μg particulates per m3 for the automotive diesel and gasoline exhaust particulates ranged from 0.20 × 10?4 to 0.60 × 10?4; that for the heavy-duty diesel engine was 0.02 × 10?4. These unit risks provide the basis for a future assessment of human lung cancer risks when combined with human population exposure to automotive emissions.  相似文献   

20.
The perception of the potential risk arising from human exposure to 50/60 Hz electric and magnetic fields was studied with a quasi-random sample of 116 well-educated, opinion leaders using the risk perception framework previously developed by Slovic, Fischhoff, and Lichtenstein. These individuals rated exposure to fields from transmission lines and electric blankets on a variety of scales that have been found useful in characterizing people's risk attitudes and perceptions. These judgments allowed us to conjecture about the likely desire for regulation of these potential hazards and the likely response to a publicized problem (e.g., an accident or ominous research finding) involving these two sources of exposure. Various forms of detailed information about 50/60 Hz fields were supplied to respondents. The provision of information produced modest, but statistically significant, changes in perceptions in the direction of greater concern about the risks. In response to questions of public policy, participants desired modest regulatory control of field exposure from transmission lines and little or no control of field exposure from appliances like electric blankets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号