首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We consider an assemble‐to‐order (ATO) system with multiple products, multiple components which may be demanded in different quantities by different products, possible batch ordering of components, random lead times, and lost sales. We model the system as an infinite‐horizon Markov decision process under the average cost criterion. A control policy specifies when a batch of components should be produced, and whether an arriving demand for each product should be satisfied. Previous work has shown that a lattice‐dependent base‐stock and lattice‐dependent rationing (LBLR) policy is an optimal stationary policy for a special case of the ATO model presented here (the generalized M‐system). In this study, we conduct numerical experiments to evaluate the use of an LBLR policy for our general ATO model as a heuristic, comparing it to two other heuristics from the literature: a state‐dependent base‐stock and state‐dependent rationing (SBSR) policy, and a fixed base‐stock and fixed rationing (FBFR) policy. Remarkably, LBLR yields the globally optimal cost in each of more than 22,500 instances of the general problem, outperforming SBSR and FBFR with respect to both objective value (by up to 2.6% and 4.8%, respectively) and computation time (by up to three orders and one order of magnitude, respectively) in 350 of these instances (those on which we compare the heuristics). LBLR and SBSR perform significantly better than FBFR when replenishment batch sizes imperfectly match the component requirements of the most valuable or most highly demanded product. In addition, LBLR substantially outperforms SBSR if it is crucial to hold a significant amount of inventory that must be rationed.  相似文献   

2.
The majority of after‐sales service providers manage their service parts inventory by focusing on the availability of service parts. This approach, combined with automatic replenishment systems, leads to reactive inventory control policies where base stock levels are adjusted only after a service contract expires. Consequently, service providers often face excess stock of critical service parts that are difficult to dispose due to their specificity. In this study, we address this problem by developing inventory control policies taking into account contract expirations. Our key idea is to reduce the base stock level of the one‐for‐one policy before obsolescence (a full or partial drop in demand rate) occurs and let demand take away excess stock. We refer to this policy as the single‐adjustment policy. We benchmark the single‐adjustment policy with the multiple‐adjustment policy (allowing multiple base stock adjustments) formulated as a dynamic program and verify that for a wide range of instances the single‐adjustment policy is an effective heuristic for the multiple‐adjustment policy. We also compare the single‐adjustment policy with the world‐dependent base stock policy offered by Song and Zipkin (1993) and identify the parameter combinations where both policies yield similar costs. We consider two special cases of the single‐adjustment policy where the base stock level is kept fixed or the base stock adjustment is postponed to the contract expiration time. We find that the initial demand rate, contract expiration time, and size of the drop in demand rate are the three key parameters driving the choice between the single‐adjustment policy and its special cases.  相似文献   

3.
This study examines a deterministic material requirements planning (MRP) problem where lead times at subsequent ordering moments differ. Adequate replenishment methods that can cope with lead time differences are lacking because of the order crossover phenomenon, that is, replenishment orders are not received in the sequence they are ordered. This study specifies how to handle order crossovers and recalculate planned order releases after an update of gross requirements. The optimal (s, S) policy is based on dynamic programing. The state space is kept to a minimum due to three fundamental insights. The performance of the optimal solution approach is compared with two heuristics based on relaxations and a benchmark approach in which order crossovers are ignored. A numerical analysis reveals that average cost savings up to 25% are possible if the optimal policy is used instead of the benchmark approach. The contribution of this study is threefold: (1) it generalizes theory on MRP ordering, allowing for lead time differences and order crossovers; (2) it develops new fundamental insights and an optimal solution procedure, leading to substantial cost saving; and (3) it provides good‐performing heuristics for a general and realistic replenishment problem that can replace the current replenishment methods within MRP.  相似文献   

4.
In recent supply chains, often operating multiple delivery modes such as standard freight shipping and air is an effective way of addressing both delivery lead time uncertainties and service rates. We propose a model on how to optimally operate multiple delivery modes. We consider a serial supply chain and an expediting option from intermediate installations to the downstream of the chain. The goods move stochastically among the installations and the system faces a stochastic demand. We identify systems that yield simple optimal policies, in which both regular ordering and expediting follow a variant of the base stock policy. Expediting allows the system to be leaner due to the reduced regular order amount. In addition, we provide managerial insights linking expediting, base stock levels, and expediting costs based on analytical and numerical results.  相似文献   

5.
We consider how a firm should ration inventory to multiple classes in a stochastic demand environment with partial, class‐dependent backlogging where the firm incurs a fixed setup cost when ordering from its supplier. We present an infinite‐horizon, average cost criterion Markov decision problem formulation for the case with zero lead times. We provide an algorithm that determines the optimal rationing policy, and show how to find the optimal base‐stock reorder policy. Numerical studies indicate that the optimal policy is similar to that given by the equivalent deterministic problem and relies on tracking both the current inventory and the rate that backorder costs are accumulating. Our study of the case of non‐zero lead time shows that a heuristic combining the optimal, zero lead time policy with an allocation policy based on a single‐period profit management problem is effective.  相似文献   

6.
Firms mitigate uncertainty in demand and supply by carrying safety stock, planning for excess capacity and diversifying supply sources. In this study, we provide a framework to jointly optimize these three levers in a periodic review infinite horizon setting, and in particular we examine how one can reduce inventory and capacity investments through proper diversification strategies. Observing that a modified base‐stock inventory policy is optimal, we find that the capacity‐diversification problem is well behaved and characterize the optimal mix of safety stock, excess capacity and extra number of supply sources. We find that higher supply uncertainty results in higher safety stock, more excess capacity, and higher diversification. But safety stock and diversification are non‐monotonic in demand uncertainty. Our results can be extended to situations in which suppliers are heterogeneous, and can be used to develop effective heuristics.  相似文献   

7.
We provide an exact myopic analysis for an N‐stage serial inventory system with batch ordering, linear ordering costs, and nonstationary demands under a finite planning horizon. We characterize the optimality conditions of the myopic nested batching newsvendor (NBN) policy and the myopic independent batching newsvendor (IBN) policy, which is a single‐stage approximation. We show that echelon reorder levels under the NBN policy are upper bounds of the counterparts under both the optimal policy and the IBN policy. In particular, we find that the IBN policy has bounded deviations from the optimal policy. We further extend our results to systems with martingale model of forecast evolution (MMFE) and advance demand information. Moreover, we provide a recursive computing procedure and optimality conditions for both heuristics which dramatically reduces computational complexity. We also find that the NBN problem under the MMFE faced by one stage has one more dimension for the forecast demand than the one faced by its downstream stage and that the NBN policy is optimal for systems with advance demand information and stationary problem data. Numerical studies demonstrate that the IBN policy outperforms on average the NBN policy over all tested instances when their optimality conditions are violated.  相似文献   

8.
We study a minimum total commitment (MTC) contract embedded in a finite‐horizon periodic‐review inventory system. Under this contract, the buyer commits to purchase a minimum quantity of a single product from the supplier over the entire planning horizon. We consider nonstationary demand and per‐unit cost, discount factor, and nonzero setup cost. Because the formulations used in existing literature are unable to handle our setting, we develop a new formulation based on a state transformation technique using unsold commitment instead of unbought commitment as state variable. We first revisit the zero setup cost case and show that the optimal ordering policy is an unsold‐commitment‐dependent base‐stock policy. We also provide a simpler proof of the optimality of the dual base‐stock policy. We then study the nonzero setup cost case and prove a new result, that the optimal solution is an unsold‐commitment‐dependent (sS) policy. We further propose two heuristic policies, which numerical tests show to perform very well. We also discuss two extensions to show the generality of our method's effectiveness. Finally, we use our results to examine the effect of different contract terms such as duration, lead time, and commitment on buyer's cost. We also compare total supply chain profits under periodic commitment, MTC, and no commitment.  相似文献   

9.
We consider a periodic‐review inventory system with regular and expedited supply modes. The expedited supply is faster than the regular supply but incurs a higher cost. Demand for the product in each period is random and sensitive to its selling price. The firm determines its order quantity from each supply in each period as well as its selling price to maximize the expected total discounted profit over a finite or an infinite planning horizon. We show that, in each period if it is optimal to order from both supplies, the optimal inventory policy is determined by two state‐independent thresholds, one for each supply mode, and a list price is set for the product; if only the regular supply is used, the optimal policy is a state‐dependent base‐stock policy, that is, the optimal base‐stock level depends on the starting inventory level, and the optimal selling price is a markdown price that decreases with the starting inventory level. We further study the operational impact of such supply diversification and show that it increases the firm's expected profit, reduces the optimal safety‐stock levels, and lowers the optimal selling price. Thus that diversification is beneficial to both the firm and its customers. Building upon these results, we conduct a numerical study to assess and compare the respective benefit of dynamic pricing and supply diversification.  相似文献   

10.
We study an average‐cost stochastic inventory control problem in which the firm can replenish inventory and adjust the price at anytime. We establish the optimality to change the price from low to high in each replenishment cycle as inventory is depleted. With costly price adjustment, scale economies of inventory replenishment are reflected in the cycle time instead of lot size—An increased fixed ordering cost leads to an extended replenishment cycle but does not necessarily increase the order quantity. A reduced marginal cost of ordering calls for an increased order quantity, as well as speeding up product selling within a cycle. We derive useful properties of the profit function that allows for reducing computational complexity of the problem. For systems requiring short replenishment cycles, the optimal solution can be easily computed by applying these properties. For systems requiring long replenishment cycles, we further consider a relaxed problem that is computational tractable. Under this relaxation, the sum of fixed ordering cost and price adjustment cost is equal to (greater than, less than) the total inventory holding cost within a replenishment cycle when the inventory holding cost is linear (convex, concave) in the stock level. Moreover, under the optimal solution, the time‐average profit is the same across all price segments when the inventory holding cost is accounted properly. Through a numerical study, we demonstrate that inventory‐based dynamic pricing can lead to significant profit improvement compared with static pricing and limited price adjustment can yield a benefit that is close to unlimited price adjustment. To be able to enjoy the benefit of dynamic pricing, however, it is important to appropriately choose inventory levels at which the price is revised.  相似文献   

11.
It is common for a firm to make use of multiple suppliers of different delivery lead times, reliabilities, and costs. In this study, we are concerned with the joint pricing and inventory control problem for such a firm that has a quick‐response supplier and a regular supplier that both suffer random disruptions, and faces price‐sensitive random demands. We aim at characterizing the optimal ordering and pricing policies in each period over a planning horizon, and analyzing the impacts of supply source diversification. We show that, when both suppliers are unreliable, the optimal inventory policy in each period is a reorder point policy and the optimal price is decreasing in the starting inventory level in that period. In addition, we show that having supply source diversification or higher supplier reliability increases the firm's optimal profit and lowers the optimal selling price. We also demonstrate that, with the selling price as a decision, a supplier may receive even more orders from the firm after an additional supplier is introduced. For the special case where the quick‐response supplier is perfectly reliable, we further show that the optimal inventory policy is of a base‐stock type and the optimal pricing policy is a list‐price policy with markdowns.  相似文献   

12.
We study a remanufacturing system that involves the ordering of a serviceable product and the remanufacturing of multiple types of returned products (cores) into the serviceable product. In addition to random demand for the serviceable product and random returned quantities of different types of cores in each time period, the remanufacturing yield of each type of core is also uncertain. By analyzing a multi‐period stochastic dynamic program, we derive several properties of the optimal ordering/remanufacturing policy. In addition to some insights, these properties can be used to reduce the search effort of the optimal policy. We also demonstrate that some existing results derived from related models no longer hold in remanufacturing systems with random yield. Recognizing the optimal ordering/remanufacturing policy is highly complex, we examine three simple heuristics that can be efficiently solved and implemented in practice. Among these three heuristics, our numerical analysis suggests that the heuristic that captures most of the yield uncertainty and future system evolvement as well as some of the properties of the optimal ordering/remanufacturing policy outperforms the other two heuristics.  相似文献   

13.
Lack of coordination between machinery fault diagnosis and inventory management for spare parts can lead to increased inventory costs and disruptions in production activity. We develop a framework for incorporating real‐time condition monitoring information into inventory decisions for spare parts. We consider a manufacturer who periodically replenishes inventory for a machine part that is subject to deterioration. The deterioration is captured via condition monitoring and modeled using a Wiener process. The resulting degradation model is used to derive the life distribution of a functioning part and to estimate the demand distribution for spare parts. This estimation is periodically updated, in a Bayesian manner, as additional information on part deterioration is obtained. We develop an inventory model that incorporates this updated demand distribution and demonstrate that a dynamic base‐stock policy, in which the optimal base‐stock level is a function of some subset of the observed condition monitoring information, is optimal. We propose a myopic critical fractile policy that captures the essence of the optimal policy, but is easier to compute. Computational experiments indicate that this heuristic performs quite well relative to the optimal policy. Adaptive inventory policies such as these can help manufacturers to increase machine availability and reduce inventory costs.  相似文献   

14.
Coordinated replenishment strategies may be implemented by jointly ordering multiple items from a common supplier. A major benefit of coordinated replenishment is that it increases the size of shipments, permitting the buyer to enjoy transportation economies without a major increase in average inventory levels. The coordinated replenishment problem is complex because side constraints govern the attainment of transportation rate breaks. The problem is further complicated by the presence of purchase quantity discount opportunities. Thus, the buyer must decide which items to order independently, which items to include in a group order, and the order quantities of each item, governed by the frequency of independent or group orders. We present a mathematical model and a heuristic solution procedure that provide analytical support to the buyer seeking to minimize total costs of replenishing multiple items from a common supplier. The relevant costs are purchase prices, ordering costs, holding costs, and transportation costs. Coordinated replenishment provides nearly a 30 percent reduction in controllable costs relative to independent control. Experimentation with the heuristic has yielded optimal solutions over 88 percent of the time. When optimality was not obtained, the mean penalty was much less than one percent. The average heuristic search was more than two orders of magnitude faster than branch and bound, even for small problems, and possessed a much tighter distribution around the mean search time.  相似文献   

15.
Inspired by recent empirical work on inventory record inaccuracy, we consider a periodic review inventory system with imperfect inventory records and unobserved lost sales. Record inaccuracies are assumed to arrive via an error process that perturbs physical inventory but is unobserved by the inventory manager. The inventory manager maintains a probability distribution around the physical inventory level that he updates based on sales observations using Bayes Theorem. The focus of this study is on understanding, approximating, and evaluating optimal forward‐looking replenishment in this environment. By analyzing one‐ and two‐period versions of the problem, we demonstrate several mechanisms by which the error process and associated record inaccuracy can impact optimal replenishment. Record inaccuracy generally brings an incentive for a myopic manager to increase stock to buffer the added uncertainty. On the other hand, a forward‐looking manager will stock less than a myopic manager, in part to improve information content for future decisions. Using an approximate partially observed dynamic programming policy and associated bound, we numerically corroborate our analytical findings and measure the effectiveness of an intelligent myopic heuristic. We find that the myopic heuristic is likely sufficiently good in practical settings targeting high service levels.  相似文献   

16.
We study the benefit obtained by exploiting modular product design in fulfilling exogenous demand for both a complete assembly and its components in a service parts inventory system. Our goal is to reduce overall service system costs by allowing assembly and/or disassembly (A/D) to occur at some unit cost per A/D action. In an extensive set of computational experiments, we compare a naïve stocking and operating policy that treats all items independently and ignores the modular product structure and related A/D capability to the optimal base stock policy, and to a policy that allows A/D from the naïve stocking levels. While extensive computational analysis shows that the optimal base stock policy improves the system cost between 3 to 26% over the naïve approach, simply allowing A/D from the naïve stocking levels captures a significant portion (an average of 67%) of the naïve–optimal gap. Our computational results demonstrate that the optimization shifts the component‐assembly mix from the naïve levels and that limiting A/D capacity affects this mix. Limiting A/D capacity can actually increase the expected number of A/D actions (versus the uncapacitated case), since the optimization shifts stocking levels to reduce the probability that “too many” actions will be required.  相似文献   

17.
We consider a centralized distribution network with multiple retailers who receive replenishment inventory to satisfy customer demand of the local markets. The operational flexibility of the network is defined as the opportunity that one retailer's excess inventory can be transferred to satisfy other retailers’ unmet customer demand due to stock-outs. A general modeling framework is developed to optimize retailers’ order quantities under any possible flexibility level of a stylized two-stage distribution network. We apply the framework to formulate and solve the transshipment problem of a distribution network with three retailers. Six typical flexibility levels are investigated to make the comparison study on the firm's profit performance under three ordering quantity policies: average demand, newsvendor order quantity, and optimal order quantity. We find that the operational flexibility and system optimization are complements to the firm's performance. The ordering policy with newsvendor ordering quantity can perform fairly well with moderate flexibility level when compared with the optimized ordering policy with full flexibility.  相似文献   

18.
Information delays exist when the most recent inventory information available to the Inventory Manager (IM) is dated. In other words, the IM observes only the inventory level that belongs to an earlier period. Such situations are not uncommon, and they arise when it takes a while to process the demand data and pass the results to the IM. We introduce dynamic information delays as a Markov process into the standard multiperiod stochastic inventory problem with backorders. We develop the concept of a reference inventory position. We show that this position along with the magnitude of the latest observed delay and the age of this observation are sufficient statistics for finding the optimal order quantities. Furthermore, we establish that the optimal ordering policy is of state‐dependent base‐stock type with respect to the reference inventory position (or state‐dependent (s, S) type if there is a fixed ordering cost). The optimal base stock and (s, S) levels depend on the magnitude of the latest observed delay and the age of this observation. Finally, we study the sensitivity of the optimal base stock and the optimal cost with respect to the sufficient statistics.  相似文献   

19.
考虑由一个供应商和多个零售商组成的分销系统。研究高、中、低三种不同信息透明度模式下系统的最优补货及分配策略以及相应的系统和各个零售商的期望成本。证明无论从系统的角度还是从零售商的角度,并非信息透明度越高,期望成本越低。从整个系统的角度来讲,虽然系统的期望成本总在高信息透明度模式下取得最低,但是,中低两种信息透明度模式谁取得第二低的系统期望成本取决于系统内各节点之间的距离以及零售商所面对客户需求的性质。从零售商的角度,高信息透明度并不能降低零售商的期望成本。零售商是否可以从较高的信息透明度水平中获益则取决于零售商在送货路线上所处的位置,系统内各节点之间的距离,以及零售商所面对客户需求的性质。  相似文献   

20.
We study inventory optimization for locally controlled, continuous‐review distribution systems with stochastic customer demands. Each node follows a base‐stock policy and a first‐come, first‐served allocation policy. We develop two heuristics, the recursive optimization (RO) heuristic and the decomposition‐aggregation (DA) heuristic, to approximate the optimal base‐stock levels of all the locations in the system. The RO heuristic applies a bottom‐up approach that sequentially solves single‐variable, convex problems for each location. The DA heuristic decomposes the distribution system into multiple serial systems, solves for the base‐stock levels of these systems using the newsvendor heuristic of Shang and Song (2003), and then aggregates the serial systems back into the distribution system using a procedure we call “backorder matching.” A key advantage of the DA heuristic is that it does not require any evaluation of the cost function (a computationally costly operation that requires numerical convolution). We show that, for both RO and DA, changing some of the parameters, such as leadtime, unit backordering cost, and demand rate, of a location has an impact only on its own local base‐stock level and its upstream locations’ local base‐stock levels. An extensive numerical study shows that both heuristics perform well, with the RO heuristic providing more accurate results and the DA heuristic consuming less computation time. We show that both RO and DA are asymptotically optimal along multiple dimensions for two‐echelon distribution systems. Finally, we show that, with minor changes, both RO and DA are applicable to the balanced allocation policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号