首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In spatial statistics the data typically consist of measurements of some quantity at irregularly scattered locations; in other words, the data form a realization of a marked point process. In this paper, we formulate subsampling estimators of the moments of general statistics computed from marked point process data, and we establish their L 2-consistency. The variance estimator in particular can be used for the construction of confidence intervals for estimated parameters. A practical data-based method for choosing a subsampling parameter is given and illustrated on a data set. Finite sample simulation examples are also presented.  相似文献   

2.
3.
Under an assumption that missing values occur randomly in a matrix, formulae are developed for the expected value and variance of six statistics that summarize the number and location of the missing values. For a seventh statistic, a regression model based on simulated data yields an estimate of the expected value. The results can be used in the development of methods to control the Type I error and approximate power and sample size for multilevel and longitudinal studies with missing data.  相似文献   

4.
Statistics and Computing - Approximate Bayesian computation (ABC) and other likelihood-free inference methods have gained popularity in the last decade, as they allow rigorous statistical inference...  相似文献   

5.
For nearly any challenging scientific problem evaluation of the likelihood is problematic if not impossible. Approximate Bayesian computation (ABC) allows us to employ the whole Bayesian formalism to problems where we can use simulations from a model, but cannot evaluate the likelihood directly. When summary statistics of real and simulated data are compared??rather than the data directly??information is lost, unless the summary statistics are sufficient. Sufficient statistics are, however, not common but without them statistical inference in ABC inferences are to be considered with caution. Previously other authors have attempted to combine different statistics in order to construct (approximately) sufficient statistics using search and information heuristics. Here we employ an information-theoretical framework that can be used to construct appropriate (approximately sufficient) statistics by combining different statistics until the loss of information is minimized. We start from a potentially large number of different statistics and choose the smallest set that captures (nearly) the same information as the complete set. We then demonstrate that such sets of statistics can be constructed for both parameter estimation and model selection problems, and we apply our approach to a range of illustrative and real-world model selection problems.  相似文献   

6.
7.
Summary: Wald statistics in generalized linear models are asymptotically 2 distributed. The asymptotic chi–squared law of the corresponding quadratic form shows disadvantages with respect to the approximation of the finite–sample distribution. It is shown by means of a comprehensive simulation study that improvements can be achieved by applying simple finite–sample size approximations to the distribution of the quadratic form in generalized linear models. These approximations are based on a 2 distribution with an estimated degree of freedom that generalizes an approach by Patnaik and Pearson. Simulation studies confirm that nominal level is maintained with higher accuracy compared to the Wald statistics.  相似文献   

8.
《Statistics》2013,47(4):335-339

Linear identities for the distribution functions of order statistics from an iid sample are defined. It is shown that such identities are true for all distributions or to some discrete distributions taking a finite number of values.  相似文献   

9.
A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample from the posterior, which contains information about the unobserved Voronoi tessellation and the model parameters. A major element of the MCMC algorithm is the reconstruction of the Voronoi tessellation after a proposed local change of the tessellation. A simulation study and examples of applications from biology (animal territories) and material science (alumina grain structure) are presented.  相似文献   

10.
Sharp rates of convergence of histogram estimates of the marginal density of a linear process are obtained. Histograms can achieve optimal rates of convergence (n−1 log n)1·3 under general conditions. The assumptions involved are easily verifiable. Histograms appear to be very good estimators from the point of view of uniform convergence.  相似文献   

11.
In the analysis of recurrent events where the primary interest lies in studying covariate effects on the expected number of events occurring over a period of time, it is appealing to base models on the cumulative mean function (CMF) of the processes (Lawless & Nadeau 1995). In many chronic diseases, however, more than one type of event is manifested. Here we develop a robust inference procedure for joint regression models for the CMFs arising from a bivariate point process. Consistent parameter estimates with robust variance estimates are obtained via unbiased estimating functions for the CMFs. In most situations, the covariance structure of the bivariate point processes is difficult to specify correctly, but when it is known, an optimal estimating function for the CMFs can be obtained. As a convenient model for more general settings, we suggest the use of the estimating functions arising from bivariate mixed Poisson processes. Simulation studies demonstrate that the estimators based on this working model are practically unbiased with robust variance estimates. Furthermore, hypothesis tests may be based on the generalized Wald or generalized score tests. Data from a trial of patients with bronchial asthma are analyzed to illustrate the estimation and inference procedures.  相似文献   

12.
Bayesian statistical inference relies on the posterior distribution. Depending on the model, the posterior can be more or less difficult to derive. In recent years, there has been a lot of interest in complex settings where the likelihood is analytically intractable. In such situations, approximate Bayesian computation (ABC) provides an attractive way of carrying out Bayesian inference. For obtaining reliable posterior estimates however, it is important to keep the approximation errors small in ABC. The choice of an appropriate set of summary statistics plays a crucial role in this effort. Here, we report the development of a new algorithm that is based on least angle regression for choosing summary statistics. In two population genetic examples, the performance of the new algorithm is better than a previously proposed approach that uses partial least squares.  相似文献   

13.
Problems involving high-dimensional data, such as pattern recognition, image analysis, and gene clustering, often require a preliminary step of dimension reduction before or during statistical analysis. If one restricts to a linear technique for dimension reduction, the remaining issue is the choice of the projection. This choice can be dictated by desire to maximize certain statistical criteria, including variance, kurtosis, sparseness, and entropy, of the projected data. Motivations for such criteria comes from past empirical studies of statistics of natural and urban images. We present a geometric framework for finding projections that are optimal for obtaining certain desired statistical properties. Our approach is to define an objective function on spaces of orthogonal linear projections—Stiefel and Grassmann manifolds, and to use gradient techniques to optimize that function. This construction uses the geometries of these manifolds to perform the optimization. Experimental results are presented to demonstrate these ideas for natural and facial images.  相似文献   

14.
15.
The authors define the scaled empirical point process. They obtain the weak limit of these point processes through a novel use of a dimension‐free method based on the convergence of compensators of multiparameter martingales. The method extends previous results in several directions. They obtain limits at points where the density may be zero, but has regular variation. The joint limit of the empirical process evaluated at distinct points is given by independent Poisson processes. They provide applications both to nearest‐neighbour density estimation in high dimensions, and to the asymptotic behaviour of multivariate extremes such as those arising from bivariate normal copulas. The Canadian Journal of Statistics 37: 347–360; 2009 © 2009 Statistical Society of Canada  相似文献   

16.
A general methodology is presented for non-parametric testing of independence, location and dispersion in multiple regression. The proposed testing procedures are based on the concepts of conditional distribution function, conditional quantile, and conditional shortest t-fraction. Techniques involved come from empirical process and extreme-value theory. The asymptotic distributions are standard Gumbel.  相似文献   

17.
Traditionally, the moments of the Weibull distribution have been calculated using the standard Weibull (Johnson and Kotz, 1970) . This article will expand on that idea and cover the truncated cases for the standard Weibull distributions. Also, the same techniques used for the standard form will be used to derive the moment expressions for the three-parameter complete and truncated Weibull distributions. The summary statistics are then calculated from the moment expressions. Weibull moments involve the gamma and incomplete gamma functions.  相似文献   

18.
The purpose of this study is to highlight dangerous motorways via estimating the intensity of accidents and study its pattern across the UK motorway network. Two methods have been developed to achieve this aim. First, the motorway-specific intensity is estimated by using a homogeneous Poisson process. The heterogeneity across motorways is incorporated using two-level hierarchical models. The data structure is multilevel since each motorway consists of junctions that are joined by grouped segments. In the second method, the segment-specific intensity is estimated. The homogeneous Poisson process is used to model accident data within grouped segments but heterogeneity across grouped segments is incorporated using three-level hierarchical models. A Bayesian method via Markov Chain Monte Carlo is used to estimate the unknown parameters in the models and the sensitivity to the choice of priors is assessed. The performance of the proposed models is evaluated by a simulation study and an application to traffic accidents in 2016 on the UK motorway network. The deviance information criterion (DIC) and the widely applicable information criterion (WAIC) are employed to choose between models.  相似文献   

19.
Two-step estimation for inhomogeneous spatial point processes   总被引:1,自引:0,他引:1  
Summary.  The paper is concerned with parameter estimation for inhomogeneous spatial point processes with a regression model for the intensity function and tractable second-order properties ( K -function). Regression parameters are estimated by using a Poisson likelihood score estimating function and in the second step minimum contrast estimation is applied for the residual clustering parameters. Asymptotic normality of parameter estimates is established under certain mixing conditions and we exemplify how the results may be applied in ecological studies of rainforests.  相似文献   

20.
Bayesian inference for pairwise interacting point processes   总被引:1,自引:0,他引:1  
Pairwise interacting point processes are commonly used to model spatial point patterns. To perform inference, the established frequentist methods can produce good point estimates when the interaction in the data is moderate, but some methods may produce severely biased estimates when the interaction in strong. Furthermore, because the sampling distributions of the estimates are unclear, interval estimates are typically obtained by parametric bootstrap methods. In the current setting however, the behavior of such estimates is not well understood. In this article we propose Bayesian methods for obtaining inferences in pairwise interacting point processes. The requisite application of Markov chain Monte Carlo (MCMC) techniques is complicated by an intractable function of the parameters in the likelihood. The acceptance probability in a Metropolis-Hastings algorithm involves the ratio of two likelihoods evaluated at differing parameter values. The intractable functions do not cancel, and hence an intractable ratio r must be estimated within each iteration of a Metropolis-Hastings sampler. We propose the use of importance sampling techniques within MCMC to address this problem. While r may be estimated by other methods, these, in general, are not readily applied in a Bayesian setting. We demonstrate the validity of our importance sampling approach with a small simulation study. Finally, we analyze the Swedish pine sapling dataset (Strand 1972) and contrast the results with those in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号