首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aging domestic oil production infrastructure represents a high risk to the environment because of the type of fluids being handled (oil and brine) and the potential for accidental release of these fluids into sensitive ecosystems. Currently, there is not a quantitative risk model directly applicable to onshore oil exploration and production (E&P) facilities. We report on a probabilistic reliability model created for onshore exploration and production (E&P) facilities. Reliability theory, failure modes and effects analysis (FMEA), and event trees were used to develop the model estimates of the failure probability of typical oil production equipment. Monte Carlo simulation was used to translate uncertainty in input parameter values to uncertainty in the model output. The predicted failure rates were calibrated to available failure rate information by adjusting probability density function parameters used as random variates in the Monte Carlo simulations. The mean and standard deviation of normal variate distributions from which the Weibull distribution characteristic life was chosen were used as adjustable parameters in the model calibration. The model was applied to oil production leases in the Tallgrass Prairie Preserve, Oklahoma. We present the estimated failure probability due to the combination of the most significant failure modes associated with each type of equipment (pumps, tanks, and pipes). The results show that the estimated probability of failure for tanks is about the same as that for pipes, but that pumps have much lower failure probability. The model can provide necessary equipment reliability information for proactive risk management at the lease level by providing quantitative information to base allocation of maintenance resources to high-risk equipment that will minimize both lost production and ecosystem damage.  相似文献   

2.
Despite rapid developments in the quality and safety of consumer products, the rise of intelligent household appliances, such as sweeping robots, has introduced new safety concerns. Considering “person–product–environment” elements and the complex systems of emerging consumer products, this study presents a new method of risk assessment for consumer products: systems theoretic process analysis (STPA)–failure mode and effects analysis (FMEA). As a case study, this method is applied to the safety control of a sweeping robot. The results suggest that this method can identify all the possible failure modes and injury scenarios among the product components, and the safety constraints in the hierarchical control structure of the interactive system. Moreover, the STPA–FMEA method combines user and environmental factors with the value of product risk events, based on the risk priority number (RPN). This provides an accurate and orderly system to reduce or eliminate the root causes of accidents and injuries. Finally, analysis of unsafe control behavior and its causes can be used to suggest improved safety constraints, which can effectively reduce the risk of some injury scenarios. This paper presents a new method of risk assessment for consumer products and a general five-level complex index system.  相似文献   

3.
The methodology and results reported in this paper are based on an analysis of a hypothetical accident occurring in a two unit power plant with shared systems (i.e., the diesel generator, the emergency service water, and the residual heat removal service water systems). The accident postulated is a loss of coolant accident (LOCA) in one out of two nuclear units in conjunction with a loss of offsite power (LOOP) and a failure of one out of four diesel generators to start. To analyze the intersystem effects, we needed to develop and apply a new methodology, intersystem common cause analysis (ICCA). The ICCA methodology revealed problems which were not identified by the traditional intrasystem failure modes and effects analysis (FMEA) performed earlier by the design teams. The first potential problem arises if one unit experiences a LOCA and diesel generator failure while one loop of its residual heat removal system is in the suppression pool cooling mode (SPCM); in this event, it is likely that minimum emergency core cooling system (ECCS) requirements will not be met. The second potential problem arises if a diesel generator fails while both units are simultaneously subjected to a controlled forced shutdown (a LOCA need not be postulated for either unit); in this event, it is likely that one unit will be required to use a heat removal path identified as off-normal in the final safety analysis report (FSAR) for the two unit plant. These and other potential concerns identified through application of the ICCA presented here were resolved early in the design phase.  相似文献   

4.
In the past few years, the field of dam safety has approached risk informed methodologies throughout the world and several methodologies and programs are appearing to aid in the systematization of the calculations. The most common way of implementing these calculations is through the use of event trees, computing event probabilities, and incremental consequences. This methodology is flexible enough for several situations, but its generalization to the case of systems of several dams is complex and its implementation in a completely general calculation methodology presents some problems. Retaining the event tree framework, a new methodology is proposed to calculate incremental risks. The main advantage of this proposed methodology is the ease with which it can be applied to systems of several dams: with a single risk model that describes the complete system and with a single calculation the incremental risks of the system can be obtained, being able to allocate the risk of each dam and of each failure mode. The article shows how both methodologies are equivalent and also applies them to a case study.  相似文献   

5.
Equipment failures can have significant implications in terms of cost and customer satisfaction. Reducing the time required to find the cause of a failure can provide large cost savings and help preserve customer goodwill. Single‐item discrete sequential search models can be used to sequence the tasks in diagnostic search to minimize the expected time required to find the cause of the failure. We increase the utility of the single‐item discrete sequential search model by developing a formulation that includes simple precedence relationships as well as sequence dependent relationships defined by group activities. This formulation can be applied to a number of other problems including determining the sequence for multiple quality control tests on an item, scheduling oil well workovers to maximize the expected increase in oil production, and sequencing tasks in a research project where there is a technological risk associated with each task.  相似文献   

6.
International regulatory authorities view risk management as an essential production need for the development of innovative, somatic cell‐based therapies in regenerative medicine. The available risk management guidelines, however, provide little guidance on specific risk analysis approaches and procedures applicable in clinical cell therapy manufacturing. This raises a number of problems. Cell manufacturing is a poorly automated process, prone to operator‐introduced variations, and affected by heterogeneity of the processed organs/tissues and lot‐dependent variability of reagent (e.g., collagenase) efficiency. In this study, the principal challenges faced in a cell‐based product manufacturing context (i.e., high dependence on human intervention and absence of reference standards for acceptable risk levels) are identified and addressed, and a risk management model approach applicable to manufacturing of cells for clinical use is described for the first time. The use of the heuristic and pseudo‐quantitative failure mode and effect analysis/failure mode and critical effect analysis risk analysis technique associated with direct estimation of severity, occurrence, and detection is, in this specific context, as effective as, but more efficient than, the analytic hierarchy process. Moreover, a severity/occurrence matrix and Pareto analysis can be successfully adopted to identify priority failure modes on which to act to mitigate risks. The application of this approach to clinical cell therapy manufacturing in regenerative medicine is also discussed.  相似文献   

7.
Some program managers share a common belief that adding a redundant component to a system reduces the probability of failure by half. This is true only if the failures of the redundant components are independent events, which is rarely the case. For example, the redundant components may be subjected to the same external loads. There is, however, in general a decrease in the failure probability of the system. Nonetheless, the redundant element comes at a cost, even if it is less than that of developing the first one when both are based on the same design. Identical parts save the most in terms of design costs, but are subjected to common failure modes from possible design errors that limit the effectiveness of the redundancy. In the development of critical systems, managers thus need to decide if the costs of a parallel system are justified by the increase in the system's reliability. NASA, for example, has used redundant spacecraft to increase the chances of mission success, which worked well in the cases of the Viking and Voyager missions. These two successes, however, do not guarantee future ones. We present here a risk analysis framework accounting for dependencies to support the decision to launch at the same time a twin mission of identical spacecraft, given incremental costs and risk-reduction benefits of the second one. We illustrate this analytical approach with the case of the Mars Exploration Rovers launched by NASA in 2003, for which we had performed this assessment in 2001.  相似文献   

8.
以VaR方法中的历史模拟ARMA预测方法(HSAF)为基本分析方法,以WTI原油现货价格为基本分析变量,衡量了中国石油企业在进行海外并购时面临的价格风险.研究结论表明,在97.6%的置信水平下,预测期内的VaR预测值比实际值要大得多,并且大多数情况下预测值是实际值的1~2倍.最后,对降低中国石油企业跨国并购市场风险提出了若干建议.  相似文献   

9.
In the general framework of quantitative methods for natural‐technological (NaTech) risk analysis, a specific methodology was developed for assessing risks caused by hazardous substances released due to earthquakes. The contribution of accidental scenarios initiated by seismic events to the overall industrial risk was assessed in three case studies derived from the actual plant layout of existing oil refineries. Several specific vulnerability models for different equipment classes were compared and assessed. The effect of differing structural resistances for process equipment on the final risk results was also investigated. The main factors influencing the final risk values resulted from the models for equipment vulnerability and the assumptions for the reference damage states of the process equipment. The analysis of case studies showed that in seismic zones the additional risk deriving from damage caused by earthquakes may be up to more than one order of magnitude higher than that associated to internal failure causes. Critical equipment was determined to be mainly pressurized tanks, even though atmospheric tanks were more vulnerable to containment loss. Failure of minor process equipment having a limited hold‐up of hazardous substances (such as pumps) was shown to have limited influence on the final values of the risk increase caused by earthquakes.  相似文献   

10.
Make‐to‐order (MTO) manufacturers must ensure concurrent availability of all parts required for production, as any unavailability may cause a delay in completion time. A major challenge for MTO manufacturers operating under high demand variability is to produce customized parts in time to meet internal production schedules. We present a case study of a producer of MTO offshore oil rigs that highlights the key aspects of the problem. The producer was faced with an increase in both demand and demand variability. Consequently, it had to rely heavily on subcontracting to handle production requirements that were in excess of its capacity. We focused on the manufacture of customized steel panels, which represent the main sub‐assemblies for building an oil rig. We considered two key tactical parameters: the planning window of the master production schedule and the planned lead time of each workstation. Under the constraint of a fixed internal delivery lead time, we determined the optimal planning parameters. This improvement effort reduced the subcontracting cost by implementing several actions: the creation of a master schedule for each sub‐assembly family of the steel panels, the smoothing of the master schedule over its planning window, and the controlling of production at each workstation by its planned lead time. We report our experience in applying the analytical model, the managerial insights gained, and how the application benefits the oil‐rig producer.  相似文献   

11.
《Risk analysis》2018,38(8):1618-1633
Climate change and its projected natural hazards have an adverse impact on the functionality and operation of transportation infrastructure systems. This study presents a comprehensive framework to analyze the risk to transportation infrastructure networks that are affected by natural hazards. The proposed risk analysis method considers both the failure probability of infrastructure components and the expected infrastructure network efficiency and capacity loss due to component failure. This comprehensive approach facilitates the identification of high‐risk network links in terms of not only their susceptibility to natural hazards but also their overall impact on the network. The Chinese national rail system and its exposure to rainfall‐related multihazards are used as a case study. The importance of various links is comprehensively assessed from the perspectives of topological, efficiency, and capacity criticality. Risk maps of the national railway system are generated, which can guide decisive action regarding investments in preventative and adaptive measures to reduce risk.  相似文献   

12.
Cybernetic Risk Analysis   总被引:2,自引:0,他引:2  
The Pearl Harbor case study reveals that risk analysis failure may be caused by any of a number of factors. However, the most important variables are system load, gain, lead time, and lag time. The dynamics of such cybernetic systems analysis constitute an important aspect in this regard. Four different risk management strategies, or organization designs, have been proposed in this paper. Each has a unique combination of the imputed variables and each has a unique cause of surprise, risk analysis failure, and crisis.  相似文献   

13.
Risk and uncertainty are integral parts of modern technology, and they must be managed effectively to allow the development of reliable, high-quality products. Because so many facets of technology and society involve risk and uncertainty, it is essential that risk management be handled in a systematic manner. Fault-tree analysis is one of the principal methods used in the analysis of systems'safety. Its detailed and systematic deductive structure makes it a valuable tool for design and diagnostic purposes. Point probability and the minimization of the expected failure probability have, until recently, dominated fault-tree analysis. A methodology that incorporates uncertainty analysis, conditional expected risk, and multiple objectives with fault-tree analysis is presented. A computer software package termed the "Distribution Analyzer and Risk Evaluator (DARE) Using Fault Trees," which translates the new methodology into a working decision-support system, is developed. DARE Using Fault Trees is a flexible computer code that is capable of analyzing the risk of the overall system in terms of the probability density function of failure probability. Emphasis is placed on the uncertainty and risk of extreme events. A comparative study between existing codes for fault-tree analysis and DARE demonstrates the strengths of the methodology. A case study for NASA's solid rocket booster is used to perform the comparative analysis.  相似文献   

14.
Many large organizations accomplish their various functions through interactions across their major components. Components refers to functional entities within a large complex organization, such as business sectors, academic departments, or regional divisions. The dependency between the various components can cause risk to propagate through their overall system. This article presents a risk assessment framework that integrates risk across a diverse set of components to the overall organization functions. This project addresses three major challenges: aggregating risk, estimating component interdependencies including cycles of dependencies, and propagating risk across components. The framework aggregates risk assessments through a value function for severity that is evaluated at the expected outcome of accomplishing planned goals in terms of performance, schedule, and resources. The value function, which represents risk tolerance, scales between defined points corresponding to failure and success. Different risk assessment may be aggregated together. This article presents a novel approach to establishing relationships between the various components. This article develops and compares three network risk propagation models that characterize the overall organizational risk. The U.S. Air Force has applied this risk framework to evaluate success in hypothetical future wars. The analysts employing this risk framework have informed billions of dollars of strategic investment decisions.  相似文献   

15.
Abstract

Reliability determines, in large part, the operational productivity. Nevertheless, a frequent problem is the absence of effective mechanisms to support maintenance management. In particular, there is a need for methodologies focused on improving the detection and analysis of risks that affect reliability. This article presents a methodological proposal for the resolution of these problems, using a high-impact failure mode analysis. The methodology is based on four phases: identification of failure modes, ranking and criticality analysis of them, identification of the root cause(s) and search for highly effective solutions. Among the variety of tools that can be used, it is proposed the use of three specific tools: Criticality Analysis, which allows discrimination and ranking of phenomena and assets; Root Cause Analysis, which focuses on the identification of the real causes of the problems; and a tool for generation of effective and efficient solutions (TRIZ), which it is not usually applied to reliability problems. The proposal is applied in a mining filtration plant, identifying and classifying current problems and generating solutions.  相似文献   

16.
The use of autonomous underwater vehicles (AUVs) for various applications have grown with maturing technology and improved accessibility. The deployment of AUVs for under-ice marine science research in the Antarctic is one such example. However, a higher risk of AUV loss is present during such endeavors due to the extremities in the Antarctic. A thorough analysis of risks is therefore crucial for formulating effective risk control policies and achieving a lower risk of loss. Existing risk analysis approaches focused predominantly on the technical aspects, as well as identifying static cause and effect relationships in the chain of events leading to AUV loss. Comparatively, the complex interrelationships between risk variables and other aspects of risk such as human errors have received much lesser attention. In this article, a systems-based risk analysis framework facilitated by system dynamics methodology is proposed to overcome existing shortfalls. To demonstrate usefulness of the framework, it is applied on an actual AUV program to examine the occurrence of human error during Antarctic deployment. Simulation of the resultant risk model showed an overall decline in human error incident rate with the increase in experience of the AUV team. Scenario analysis based on the example provided policy recommendations in areas of training, practice runs, recruitment policy, and setting of risk tolerance level. The proposed risk analysis framework is pragmatically useful for risk analysis of future AUV programs to ensure the sustainability of operations, facilitating both better control and monitoring of risk.  相似文献   

17.
基于VECM的汽柴油价格不对称性分析   总被引:3,自引:3,他引:3  
原油作为成品油的主要原材料,原油价格的变化会引起成品油价格的相应变化,从成品油价格关于原油价格变化的反应可以了解成品油定价的合理性.本文利用一个不对称的向量误差修正模型(Vector Error CorrectionModel,VECM),检验了我国汽柴油关于原油成本变化不对称性问题,检验结果表明,我国汽柴油对原油成本上涨的反应快,但持续的时间短;对原油成本下降的反应慢,但持续的时间长.研究结果对我国石油定价机制的改革和企业实施油价风险管理有参考价值.  相似文献   

18.
In recent years, perception of flood risks has become an important topic to policy makers concerned with risk management and safety issues. Knowledge of the public risk perception is considered a crucial aspect in modern flood risk management as it steers the development of effective and efficient flood mitigation strategies. This study aimed at gaining insight into the perception of flood risks along the Belgian coast. Given the importance of the tourism industry on the Belgian coast, the survey considered both inhabitants and residential tourists. Based on actual expert's risk assessments, a high and a low risk area were selected for the study. Risk perception was assessed on the basis of scaled items regarding storm surges and coastal flood risks. In addition, various personal and residence characteristics were measured. Using multiple regression analysis, risk perception was found to be primarily influenced by actual flood risk estimates, age, gender, and experience with previous flood hazards.  相似文献   

19.
Significant research work has been completed in the development of risk-based inservice inspection (ISI) and testing (IST) technology for nuclear power plant applications through the ASME Center For Research and Technology Development. This paper provides technology that has been developed for these engineering applications. The technology includes risk-based ranking methods, beginning with the use of plant probabilistic risk assessment (PRA), for the determination of risk-significant and less risk-significant components for inspection and the determination of similar populations for pumps and valves for inservice testing. Decision analysis methods are outlined for developing ISI and IST programs. This methodology integrates nondestructive examination data, structural reliability/risk assessment results, PRA results, failure data, and expert opinion to evaluate the effectiveness of ISI programs. Similarly, decision analysis uses the output of failure mode and causes analysis in combination with data, expert opinion, and PRA results to evaluate the effectiveness of IST programs. Results of pilot applications of these ASME methods to actual nuclear plant systems and components are summarized. The results of this work are already being used to develop recommended changes in ISI and IST requirements by the ASME Section XI and the ASME Operation and Maintenance Code organizations. A perspective on Code and regulatory adoption is also outlined. Finally, the potential benefits to the nuclear industry in terms of safety, person-rem exposure, and costs are summarized.  相似文献   

20.
This article presents an iterative six‐step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号