首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let \mathbbF(2n+d)q2\mathbb{F}^{(2\nu+\delta)}_{q^{2}} be a (2ν+δ)-dimensional unitary space of \mathbbFq2\mathbb{F}_{q^{2}} , where δ=0 or 1. In this paper we construct a family of inclusion matrices associated with subspaces of \mathbbF(2n+d)q2\mathbb{F}^{(2\nu+\delta)}_{q^{2}} , and exhibit its disjunct property. Moreover, we compare the ratio efficiency of this construction with others, and find it smaller under some conditions.  相似文献   

2.
For a positive integer k, a total {k}-dominating function of a graph G is a function f from the vertex set V(G) to the set {0,1,2,…,k} such that for any vertex vV(G), the condition ∑ uN(v) f(u)≥k is fulfilled, where N(v) is the open neighborhood of v. A set {f 1,f 2,…,f d } of total {k}-dominating functions on G with the property that ?i=1dfi(v) £ k\sum_{i=1}^{d}f_{i}(v)\le k for each vV(G), is called a total {k}-dominating family (of functions) on G. The maximum number of functions in a total {k}-dominating family on G is the total {k}-domatic number of G, denoted by dt{k}(G)d_{t}^{\{k\}}(G). Note that dt{1}(G)d_{t}^{\{1\}}(G) is the classic total domatic number d t (G). In this paper we initiate the study of the total {k}-domatic number in graphs and we present some bounds for dt{k}(G)d_{t}^{\{k\}}(G). Many of the known bounds of d t (G) are immediate consequences of our results.  相似文献   

3.
A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdgt(G)\mathrm {sd}_{\gamma_{t}}(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that sdgt(G) £ gt(G)+1\mathrm {sd}_{\gamma_{t}}(G)\leq\gamma_{t}(G)+1 for some classes of graphs.  相似文献   

4.
The following planar minimum disk cover problem is considered in this paper: given a set D\mathcal{D} of n disks and a set ℘ of m points in the Euclidean plane, where each disk covers a subset of points in ℘, to compute a subset of disks with minimum cardinality covering ℘. This problem is known to be NP-hard and an algorithm which approximates the optimal disk cover within a factor of (1+ε) in O(mnO(\frac1e2log2\frac1e))\mathcal{O}(mn^{\mathcal{O}(\frac{1}{\epsilon^{2}}\log^{2}\frac{1}{\epsilon})}) time is proposed in this paper. This work presents the first polynomial time approximation scheme for the minimum disk cover problem where the best known algorithm can approximate the optimal solution with a large constant factor. Further, several variants of the minimum disk cover problem such as the incongruent disk cover problem and the weighted disk cover problem are considered and approximation schemes are designed.  相似文献   

5.
In the connected facility location (ConFL) problem, we are given a graph G=(V,E) with nonnegative edge cost c e on the edges, a set of facilities ??V, a set of demands (i.e., clients) $\mathcal{D}\subseteq VIn the connected facility location (ConFL) problem, we are given a graph G=(V,E) with nonnegative edge cost c e on the edges, a set of facilities ℱ⊆V, a set of demands (i.e., clients) D í V\mathcal{D}\subseteq V , and a parameter M≥1. Each facility i has a nonnegative opening cost f i and each client j has d j units of demand. Our objective is to open some facilities, say F⊆ℱ, assign each demand j to some open facility i(j)∈F and connect all open facilities using a Steiner tree T such that the total cost, which is ?i ? Ffi+?j ? Ddjci(j)j+M?e ? Tce\sum_{i\in F}f_{i}+\sum_{j\in \mathcal{D}}d_{j}c_{i(j)j}+M\sum_{e\in T}c_{e} , is minimized. We present a primal-dual 6.55-approximation algorithm for the ConFL problem which improves the previous primal-dual 8.55-approximation algorithm given by Swamy and Kumar (Algorithmica 40:245–269, 2004).  相似文献   

6.
In this paper, we construct two classes of t×n,s e -disjunct matrix with subspaces in orthogonal space \mathbbFq(2n+1)\mathbb{F}_{q}^{(2\nu+1)} of characteristic 2 and exhibit their disjunct properties. We also prove that the test efficiency t/n of constructions II is smaller than that of D’yachkov et al. (J. Comput. Biol. 12:1129–1136, 2005).  相似文献   

7.
In this paper, we formulate and investigate the following problem: given integers d,k and r where k>r≥1,d≥2, and a prime power q, arrange d hyperplanes on to maximize the number of r-dimensional subspaces of each of which belongs to at least one of the hyperplanes. The problem is motivated by the need to give tighter bounds for an error-tolerant pooling design based on finite vector spaces. This work is partially supported by NSF CAREER Award CCF-0347565.  相似文献   

8.
Let \mathbbFqn\mathbb{F}_{q}^{n} be a n-dimensional vector space over \mathbbFq\mathbb{F}_{q} . In this paper we construct a new family of inclusion matrices associated with subspaces of \mathbbFqn\mathbb{F}_{q}^{n} , and exhibit their disjunct properties.  相似文献   

9.
We study the online problem of single machine scheduling to minimize total general completion time. General completion time is defined as Caj=(Cj)aC^{\alpha}_{j}=(C_{j})^{\alpha}, where C j denotes the completion time of job J j and α≥1 is a constant integer. Total general completion time characterizes the feather in service that when a customer is served later in time, his dissatisfaction increases in a manner of power function. The objective function ∑(C j ) α can also be viewed as a total weighted completion time, but the “weight” is no longer a constant number. Our purpose to minimize customers’ total dissatisfaction. The problem is online in the sense that all jobs arrive over time. Each job’s processing time becomes known at its arrival time. Preemption is not allowed. For this online problem, we show that a lower bound on competitive ratio is 2 α and prove that D-SPT (delayed shortest processing time) algorithm is optimal with a competitive ratio 2 α .  相似文献   

10.
Approximation algorithms for connected facility location problems   总被引:1,自引:1,他引:0  
We study Connected Facility Location problems. We are given a connected graph G=(V,E) with nonnegative edge cost c e for each edge eE, a set of clients DV such that each client jD has positive demand d j and a set of facilities FV each has nonnegative opening cost f i and capacity to serve all client demands. The objective is to open a subset of facilities, say , to assign each client jD to exactly one open facility i(j) and to connect all open facilities by a Steiner tree T such that the cost is minimized for a given input parameter M≥1. We propose a LP-rounding based 8.29 approximation algorithm which improves the previous bound 8.55 (Swamy and Kumar in Algorithmica, 40:245–269, 2004). We also consider the problem when opening cost of all facilities are equal. In this case we give a 7.0 approximation algorithm.  相似文献   

11.
We show that the problem of finding a perfect matching satisfying a single equality constraint with a 0–1 coefficients in an n × n incomplete bipartite graph, polynomially reduces to a special case of the same peoblem called the partitioned case. Finding a solution matching for the partitioned case in the incomlpete bipartite graph, is equivalent to minimizing a partial sum of the variables over = the convex hull of incidence vectors of solution matchings for the partitioned case in the complete bipartite graph. An important strategy to solve this minimization problem is to develop a polyhedral characterization of . Towards this effort, we present two large classes of valid inequalities for , which are proved to be facet inducing using a facet lifting scheme.  相似文献   

12.
A graph G is said to be neighbor-sum-distinguishing edge k-choose if, for every list L of colors such that L(e) is a set of k positive real numbers for every edge e, there exists a proper edge coloring which assigns to each edge a color from its list so that for each pair of adjacent vertices u and v the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let \(\mathrm{ch}^{\prime }_{\sum ^p}(G)\) denote the smallest integer k such that G is neighbor-sum-distinguishing edge k-choose. In this paper, we prove that if G is a subcubic graph with the maximum average degree mad(G), then (1) \(\mathrm{ch}^{\prime }_{\sum ^p}(G)\le 7\); (2) \(\mathrm{ch}^{\prime }_{\sum ^p}(G)\le 6\) if \(\hbox {mad}(G)<\frac{36}{13}\); (3) \(\mathrm{ch}^{\prime }_{\sum ^p}(G)\le 5\) if \(\hbox {mad}(G)<\frac{5}{2}\).  相似文献   

13.
This paper studies the group testing problem in graphs as follows. Given a graph G=(V,E), determine the minimum number t(G) such that t(G) tests are sufficient to identify an unknown edge e with each test specifies a subset XV and answers whether the unknown edge e is in G[X] or not. Damaschke proved that ⌈log 2 e(G)⌉≤t(G)≤⌈log 2 e(G)⌉+1 for any graph G, where e(G) is the number of edges of G. While there are infinitely many complete graphs that attain the upper bound, it was conjectured by Chang and Hwang that the lower bound is attained by all bipartite graphs. Later, they proved that the conjecture is true for complete bipartite graphs. Chang and Juan verified the conjecture for bipartite graphs G with e(G)≤24 or for k≥5. This paper proves the conjecture for bipartite graphs G with e(G)≤25 or for k≥6. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. J.S.-t.J. is supported in part by the National Science Council under grant NSC89-2218-E-260-013. G.J.C. is supported in part by the National Science Council under grant NSC93-2213-E002-28. Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan. National Center for Theoretical Sciences, Taipei Office.  相似文献   

14.
Let γ t {k}(G) denote the total {k}-domination number of graph G, and let denote the Cartesian product of graphs G and H. In this paper, we show that for any graphs G and H without isolated vertices, . As a corollary of this result, we have for all graphs G and H without isolated vertices, which is given by Pak Tung Ho (Util. Math., 2008, to appear) and first appeared as a conjecture proposed by Henning and Rall (Graph. Comb. 21:63–69, 2005). The work was supported by NNSF of China (No. 10701068 and No. 10671191).  相似文献   

15.
On domination number of Cartesian product of directed paths   总被引:2,自引:2,他引:0  
Let γ(G) denote the domination number of a digraph G and let P m P n denote the Cartesian product of P m and P n , the directed paths of length m and n. In this paper, we give a lower and upper bound for γ(P m P n ). Furthermore, we obtain a necessary and sufficient condition for P m P n to have efficient dominating set, and determine the exact values: γ(P 2P n )=n, g(P3\square Pn)=n+é\fracn4ù\gamma(P_{3}\square P_{n})=n+\lceil\frac{n}{4}\rceil, g(P4\square Pn)=n+é\frac2n3ù\gamma(P_{4}\square P_{n})=n+\lceil\frac{2n}{3}\rceil, γ(P 5P n )=2n+1 and g(P6\square Pn)=2n+é\fracn+23ù\gamma(P_{6}\square P_{n})=2n+\lceil\frac{n+2}{3}\rceil.  相似文献   

16.
A labeling of a graph G is an injective function f:V(G)→?. The bandwidth sum of a graph G with respect to a labeling f is $B_{s}^{f}(G) = \sum_{uv \in E(G)} |f(u)-f(v)|$ and the bandwidth sum of G is $B_{s}(G) = \min\{B_{s}^{f}(G)\colon f\mbox{ is a labeling of }G\}$ . In this paper, we determine bandwidth sums for some block graphs and cacti.  相似文献   

17.
It is known that (Cai, 2001). The reverse direction of whether ZPPNP is contained in remains open. We show that if the zero-error algorithm is allowed to ask only one query to the NP oracle (for any input and random string), then it can be simulated in . That is, we prove that . Next we consider whether the above result can be improved as and point out a difficulty in doing so. Via a simple proof, we observe that BPP ⊆ ZPPNP[1] (a result implicitly proven in some prior work). Thus, achieving the above improvement would imply BPP ⊆ PNP, settling a long standing open problem. We then argue that the above mentioned improvement can be obtained for the next level of the polynomial time hierarchy. Namely, we prove that . On the other hand, by adapting our proof of our main result it can be shown that . For the purpose of comparing these two results, we prove that . We conclude by observing that the above claims extend to the higher levels of the hierarchy: for k ≥ 2, and . Research supported in part by NSF grant CCR-0208013. A preliminary version of the paper was presented at COCOON′05 Cai and Chakaravarthy (2005). Part of the research was conducted while the author was at the University of Wisconsin, Madison.  相似文献   

18.
Let G=(V,E) be a graph. A set SV is a restrained dominating set if every vertex in VS is adjacent to a vertex in S and to a vertex in VS. The restrained domination number of G, denoted γ r (G), is the smallest cardinality of a restrained dominating set of G. A graph G is said to be cubic if every vertex has degree three. In this paper, we study restrained domination in cubic graphs. We show that if G is a cubic graph of order n, then gr(G) 3 \fracn4\gamma_{r}(G)\geq \frac{n}{4} , and characterize the extremal graphs achieving this lower bound. Furthermore, we show that if G is a cubic graph of order n, then gr(G) £ \frac5n11.\gamma _{r}(G)\leq \frac{5n}{11}. Lastly, we show that if G is a claw-free cubic graph, then γ r (G)=γ(G).  相似文献   

19.
The geometric-arithmetic index was introduced in the chemical graph theory and it has shown to be applicable. The aim of this paper is to obtain the extremal graphs with respect to the geometric-arithmetic index among all graphs with minimum degree 2. Let G(2, n) be the set of connected simple graphs on n vertices with minimum degree 2. We use linear programming formulation and prove that the minimum value of the first geometric-arithmetic \((GA_{1})\) index of G(2, n) is obtained by the following formula:
$$\begin{aligned} GA_1^* = \left\{ \begin{array}{ll} n&{}\quad n \le 24, \\ \mathrm{{24}}\mathrm{{.79}}&{}\quad n = 25, \\ \frac{{4\left( {n - 2} \right) \sqrt{2\left( {n - 2} \right) } }}{n}&{}\quad n \ge 26. \\ \end{array} \right. \end{aligned}$$
  相似文献   

20.
In this paper we study the inverse problem of matroid intersection: Two matroids M 1 = (E, 1) and M 2 = (E, 2), their intersection B, and a weight function w on E are given. We try to modify weight w, optimally and with bounds, such that B becomes a maximum weight intersection under the modified weight. It is shown in this paper that the problem can be formulated as a combinatorial linear program and can be further transformed into a minimum cost circulation problem. Hence it can be solved by strongly polynomial time algorithms. We also give a necessary and sufficient condition for the feasibility of the problem. Finally we extend the discussion to the version of the problem with Multiple Intersections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号