首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Qi Zheng 《Risk analysis》1997,17(5):617-624
Survival and hazard functions play a pivotal role in carcinogenesis modeling. This paper provides a unified approach to computing these two quantities by classifying a large class of carcinogenesis models from a computational point of view, and prescribes specific computational recipes according to this classification.  相似文献   

2.
3.
Qi Zheng 《Risk analysis》1994,14(6):1081-1084
The MVK two-stage carcinogenesis model is one of the most widely accepted mechanistic models in carcinogenesis modeling. However, due to a perceived difficulty in obtaining analytic solutions for the hazard and survival functions, approximations and numerical methods have been used to calculate these two fundamental quantities. This paper focuses on a special case of the homogeneous MVK model where the number of normal cells is constant. The probability generating function (pgf) for the number of tumor cells is derived, and the exact analytic solutions to the hazard and survival functions are obtained from the pgf.  相似文献   

4.
Multistage clonal expansion (MSCE) models of carcinogenesis are continuous‐time Markov process models often used to relate cancer incidence to biological mechanism. Identifiability analysis determines what model parameter combinations can, theoretically, be estimated from given data. We use a systematic approach, based on differential algebra methods traditionally used for deterministic ordinary differential equation (ODE) models, to determine identifiable combinations for a generalized subclass of MSCE models with any number of preinitation stages and one clonal expansion. Additionally, we determine the identifiable combinations of the generalized MSCE model with up to four clonal expansion stages, and conjecture the results for any number of clonal expansion stages. The results improve upon previous work in a number of ways and provide a framework to find the identifiable combinations for further variations on the MSCE models. Finally, our approach, which takes advantage of the Kolmogorov backward equations for the probability generating functions of the Markov process, demonstrates that identifiability methods used in engineering and mathematics for systems of ODEs can be applied to continuous‐time Markov processes.  相似文献   

5.
Multistage models have become the basic paradigm for modeling carcinogenesis. One model, the two-stage model of carcinogenesis, is now routinely used in the analysis of cancer risks from exposure to environmental chemicals. In its most general form, this model has two states, an initiated state and a neoplastic state, which allow for growth of cells via a simple linear birth-death process. In all analyses done with this model, researchers have assumed that tumor incidence is equivalent to the formation of a single neoplastic cell and the growth kinetics in the neoplastic state have been ignored. Some researchers have discussed the impact of this assumption on their analyses, but no formal methods were available for a more rigorous application of the birth-death process. In this paper, an approximation is introduced which allows for the application of growth kinetics in the neoplastic state. The adequacy of the approximation against simulated data is evaluated and methods are developed for implementing the approximation using data on the number and size of neoplastic clones.  相似文献   

6.
The Promise of Molecular Epidemiology for Quantitative Risk Assessment   总被引:1,自引:0,他引:1  
In the long run, molecular epidemiological techniques can provide important insights for understanding a wide variety of important issues in current risk assessment and are applicable across a broad spectrum of adverse effects in addition to carcinogenesis. Unfortunately, current risk assessment practices make very little use of the kind of detailed mechanistic information that molecular epidemiology can provide. Eventually, there is reason to hope that the availability of mechanistic insights provided in part by molecular epidemiology can produce some of the "essential tension" required to reform paradigms for the formulation of quantitative risk assessment models in general.  相似文献   

7.
Previous applications of carcinogenic risk assessment using mathematical models of carcinogenesis have focused largely on the case where the level of exposure remains constant over time. In many situations, however, the dose of the carcinogen varies with time. In this paper, we discuss both the classical Armitage-Doll multistage model and the Moolgavkar-Venzon-Knudson two-stage birth-death-mutation model with time-dependent dosing regimens. Bounds on the degree of underestimation of risk that can occur through the use of a simple time-weighted average dose are derived by means of comparison with an equivalent constant dose corresponding to the actual risk under the time-dependent dosing regimen.  相似文献   

8.
Stochastic two-stage clonal expansion (TSCE) models of carcinogenesis offer the following clear theoretical explanation for U-shaped cancer dose-response relations. Low doses that kill initiated (premalignant) cells thereby create a protective effect. At higher doses, this effect is overwhelmed by an increase in the net number of initiated cells. The sum of these two effects, from cell killing and cell proliferation, gives a U-shaped or J-shaped dose-response relation. This article shows that exposures that do not kill, repair, or decrease cell populations, but that only hasten transitions that lead to cancer, can also generate U-shaped and J-shaped dose-response relations in a competing-risk (modified TSCE) framework where exposures disproportionately hasten transitions into carcinogenic pathways with relatively long times to tumor. Quantitative modeling of the competing effects of more transitions toward carcinogenesis (risk increasing) and a higher proportion of transitions into the slower pathway (risk reducing) shows that a J-shaped dose-response relation can occur even if exposure increases the number of initiated cells at every positive dose level. This suggests a possible new explanation for hormetic dose-response relations in response to carcinogenic exposures that do not have protective (cell-killing) effects. In addition, the examples presented emphasize the role of time in hormesis: exposures that monotonically increase risks at younger ages may nonetheless produce a U-shaped or J-shaped dose-response relation for lifetime risk of cancer.  相似文献   

9.
The exposure-response relationship for airborne hexavalent chromium exposure and lung cancer mortality is well described by a linear relative rate model. However, categorical analyses have been interpreted to suggest the presence of a threshold. This study investigates nonlinear features of the exposure response in a cohort of 2,357 chemical workers with 122 lung cancer deaths. In Poisson regression, a simple model representing a two-step carcinogenesis process was evaluated. In a one-stage context, fractional polynomials were investigated. Cumulative exposure dose metrics were examined corresponding to cumulative exposure thresholds, exposure intensity (concentration) thresholds, dose-rate effects, and declining burden of accumulated effect on future risk. A simple two-stage model of carcinogenesis provided no improvement in fit. The best-fitting one-stage models used simple cumulative exposure with no threshold for exposure intensity and had sufficient power to rule out thresholds as large as 30 microg/m3 CrO3 (16 microg/m3 as Cr+6) (one-sided 95% confidence limit, likelihood ratio test). Slightly better-fitting models were observed with cumulative exposure thresholds of 0.03 and 0.5 mg-yr/m3 (as CrO3) with and without an exposure-race interaction term, respectively. With the best model, cumulative exposure thresholds as large as 0.4 mg-yr/m3 CrO3 were excluded (two-sided upper 95% confidence limit, likelihood ratio test). A small departure from dose-rate linearity was observed, corresponding to (intensity)0.8 but was not statistically significant. Models in which risk-inducing damage burdens declined over time, based on half-lives ranging from 0.1 to 40 years, fit less well than assuming a constant burden. A half-life of 8 years or less was excluded (one-sided 95% confidence limit). Examination of nonlinear features of the hexavalent chromium-lung cancer exposure response in a population used in a recent risk assessment supports using the traditional (lagged) cumulative exposure paradigm: no intensity (concentration) threshold, linearity in intensity, and constant increment in risk following exposure.  相似文献   

10.
Many models of exposure-related carcinogenesis, including traditional linearized multistage models and more recent two-stage clonal expansion (TSCE) models, belong to a family of models in which cells progress between successive stages-possibly undergoing proliferation at some stages-at rates that may depend (usually linearly) on biologically effective doses. Biologically effective doses, in turn, may depend nonlinearly on administered doses, due to PBPK nonlinearities. This article provides an exact mathematical analysis of the expected number of cells in the last ("malignant") stage of such a "multistage clonal expansion" (MSCE) model as a function of dose rate and age. The solution displays symmetries such that several distinct sets of parameter values provide identical fits to all epidemiological data, make identical predictions about the effects on risk of changes in exposure levels or timing, and yet make significantly different predictions about the effects on risk of changes in the composition of exposure that affect the pharmacodynamic dose-response relation. Several different predictions for the effects of such an intervention (such as reducing carcinogenic constituents of an exposure) that acts on only one or a few stages of the carcinogenic process may be equally consistent with all preintervention epidemiological data. This is an example of nonunique identifiability of model parameters and predictions from data. The new results on nonunique model identifiability presented here show that the effects of an intervention on changing age-specific cancer risks in an MSCE model can be either large or small, but that which is the case cannot be predicted from preintervention epidemiological data and knowledge of biological effects of the intervention alone. Rather, biological data that identify which rate parameters hold for which specific stages are required to obtain unambiguous predictions. From epidemiological data alone, only a set of equally likely alternative predictions can be made for the effects on risk of such interventions.  相似文献   

11.
The two-stage mathematical model of carcinogenesis has been shown to be nonidentifiable whenever tumor incidence data alone is used to fit the model (Hanin and Yakovlev, 1996). This lack of identifiability implies that more than one parameter vector satisfies the optimization criteria for parameter estimation, e.g., maximum likelihood estimation. A question of greater concern to persons using the two-stage model of carcinogenesis is under what conditions can identifiable parameters be obtained from the observed experimental data. We outline how to obtain identifiable parameters for the two-stage model.  相似文献   

12.
One of the challenges of introducing greater biological realism into stochastic models of cancer induction is to find a way to represent the homeostatic control of the normal cell population over its own size without complicating the analysis too much to obtain useful results. Current two-stage models of carcinogenesis typically ignore homeostatic control. Instead, a deterministic growth path is specified for the population of "normal" cells, while the population of "initiated" cells is assumed to grow randomly according to a birth-death process with random immigrations from the normal population. This paper introduces a simple model of homeostatically controlled cell division for mature tissues, in which the size of the nonmalignant population remains essentially constant over time. Growth of the nonmalignant cell population (normal and initiated cells) is restricted by allowing cells to divide only to fill the "openings" left by cells that die or differentiate, thus maintaining the constant size of the nonmalignant cell population. The fundamental technical insight from this model is that random walks, rather than birth-and-death processes, are the appropriate stochastic processes for describing the kinetics of the initiated cell population. Qualitative and analytic results are presented, drawn from the mathematical theories of random walks and diffusion processes, that describe the probability of spontaneous extinction and the size distribution of surviving initiated populations when the death/differentiation rates of normal and initiated cells are known. The constraint that the nonmalignant population size must remain approximately constant leads to much simpler analytic formulas and approximations, flowing directly from random walk theory, than in previous birth-death models.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Apoptosis and Chemical Carcinogenesis   总被引:1,自引:0,他引:1  
Long recognized as a normal component of organogenesis during development, apoptosis (programmed cell death) has recently been implicated in alterations of cell growth and differentiation. Tissue homeostasis is normally maintained by a balance between cell division and cell death, with apoptosis often functioning in complement to cell growth. Thus, antithetical parallels in chemical carcinogenesis can be drawn between apoptosis and the proliferative events more commonly addressed. While enhanced cell replication may contribute to an increased frequency of mutation, apoptosis within a tissue may counteract chemical carcinogenesis through loss of mutated cells. Many strong carcinogens act as tumor promoters, selectively expanding an initiated cell population advantageously over surrounding cells. Similarly, chemicals with a selective inhibition of apoptosis within an initiated population would offer a growth advantage. In contrast, chemicals causing selective apoptosis of initiated cells would be expected to have an anticarcinogenic effect. Selective apoptosis, in concert with cell-specific replication, may explain the unique promoting effects of different carcinogens such as the peroxisome-proliferating chemicals, phenobarbital, and 2,3,7,8-tetrachloro-dibenzo- p -dioxin (TCDD). Cell turnover, both cell growth and cell death, is central to the process of chemically induced carcinogenesis in animals and understanding its impact is a critical determinant of the relevance of chemically induced effects to man.  相似文献   

14.
To make the methodology of risk assessment more consistent with the realities of biological processes, a computer-based model of the carcinogenic process may be used. A previously developed probabilistic model, which is based on a two-stage theory of carcinogenesis, represents urinary bladder carcinogenesis at the cellular level with emphasis on quantification of cell dynamics: cell mitotic rates, cell loss and birth rates, and irreversible cellular transitions from normal to initiated to transformed states are explicitly accounted for. Analyses demonstrate the sensitivity of tumor incidence to the timing and magnitude of changes to these cellular variables. It is demonstrated that response in rats following administration of nongenotoxic compounds, such as sodium saccharin, can be explained entirely on the basis of cytotoxicity and consequent hyperplasia alone.  相似文献   

15.
In recent years physiologically based pharmacokinetic models have come to play an increasingly important role in risk assessment for carcinogens. The hope is that they can help open the black box between external exposure and carcinogenic effects to experimental observations, and improve both high-dose to low-dose and interspecies projections of risk. However, to date, there have been only relatively preliminary efforts to assess the uncertainties in current modeling results. In this paper we compare the physiologically based pharmacokinetic models (and model predictions of risk-related overall metabolism) that have been produced by seven different sets of authors for perchloroethylene (tetrachloroethylene). The most striking conclusion from the data is that most of the differences in risk-related model predictions are attributable to the choice of the data sets used for calibrating the metabolic parameters. Second, it is clear that the bottom-line differences among the model predictions are appreciable. Overall, the ratios of low-dose human to bioassay rodent metabolism spanned a 30-fold range for the six available human/rat comparisons, and the seven predicted ratios of low-dose human to bioassay mouse metabolism spanned a 13-fold range. (The greater range for the rat/human comparison is attributable to a structural assumption by one author group of competing linear and saturable pathways, and their conclusion that the dangerous saturable pathway constitutes a minor fraction of metabolism in rats.) It is clear that there are a number of opportunities for modelers to make different choices of model structure, interpretive assumptions, and calibrating data in the process of constructing pharmacokinetic models for use in estimating "delivered" or "biologically effective" dose for carcinogenesis risk assessments. We believe that in presenting the results of such modeling studies, it is important for researchers to explore the results of alternative, reasonably likely approaches for interpreting the available data--and either show that any conclusions they make are relatively insensitive to particular interpretive choices, or to acknowledge the differences in conclusions that would result from plausible alternative views of the world.  相似文献   

16.
17.
The Exact Formula for Tumor Incidence in the Two-Stage Model   总被引:3,自引:0,他引:3  
An exact formula for the tumor incidence rate in the usual two-stage model of carcinogenesis is presented. This formula is simple and easily implemented on calculators and computers.  相似文献   

18.
We present a mathematical treatment of a two-mutation model for carcinogenesis with time-dependent parameters. This model has previously been shown to be consistent with epidemiologic and experimental data. An approximate hazard function used in previous papers is critically evaluated.  相似文献   

19.
The probability of tumor and hazard function are calculated in a stochastic two-stage model for carcinogenesis when the parameters of the mode are time-dependent. The method used is called the method of characteristics.  相似文献   

20.
Mathematical expressions are derived, under different dosing patterns, for the number and size of premalignant clones within the framework of a two-mutation model for carcinogenesis, which has previously been shown to be consistent with a large body of epidemiologic and experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号