首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The hazard function plays an important role in survival analysis and reliability, since it quantifies the instantaneous failure rate of an individual at a given time point t, given that this individual has not failed before t. In some applications, abrupt changes in the hazard function are observed, and it is of interest to detect the location of such a change. In this paper, we consider testing of existence of a change in the parameters of an exponential regression model, based on a sample of right-censored survival times and the corresponding covariates. Likelihood ratio type tests are proposed and non-asymptotic bounds for the type II error probability are obtained. When the tests lead to acceptance of a change, estimators for the location of the change are proposed. Non-asymptotic upper bounds of the underestimation and overestimation probabilities are obtained. A short simulation study illustrates these results.  相似文献   

2.
Abstract.  Hazard rate estimation is an alternative to density estimation for positive variables that is of interest when variables are times to event. In particular, it is here shown that hazard rate estimation is useful for seismic hazard assessment. This paper suggests a simple, but flexible, Bayesian method for non-parametric hazard rate estimation, based on building the prior hazard rate as the convolution mixture of a Gaussian kernel with an exponential jump-size compound Poisson process. Conditions are given for a compound Poisson process prior to be well-defined and to select smooth hazard rates, an elicitation procedure is devised to assign a constant prior expected hazard rate while controlling prior variability, and a Markov chain Monte Carlo approximation of the posterior distribution is obtained. Finally, the suggested method is validated in a simulation study, and some Italian seismic event data are analysed.  相似文献   

3.
In the development of many diseases there are often associated variables which continuously measure the progress of an individual towards the final expression of the disease (failure). Such variables are stochastic processes, here called marker processes, and, at a given point in time, they may provide information about the current hazard and subsequently on the remaining time to failure. Here we consider a simple additive model for the relationship between the hazard function at time t and the history of the marker process up until time t. We develop some basic calculations based on this model. Interest is focused on statistical applications for markers related to estimation of the survival distribution of time to failure, including (i) the use of markers as surrogate responses for failure with censored data, and (ii) the use of markers as predictors of the time elapsed since onset of a survival process in prevalent individuals. Particular attention is directed to potential gains in efficiency incurred by using marker process information.  相似文献   

4.
The hazard function plays an important role in cancer patient survival studies, as it quantifies the instantaneous risk of death of a patient at any given time. Often in cancer clinical trials, unimodal hazard functions are observed, and it is of interest to detect (estimate) the turning point (mode) of hazard function, as this may be an important measure in patient treatment strategies with cancer. Moreover, when patient cure is a possibility, estimating cure rates at different stages of cancer, in addition to their proportions, may provide a better summary of the effects of stages on survival rates. Therefore, the main objective of this paper is to consider the problem of estimating the mode of hazard function of patients at different stages of cervical cancer in the presence of long-term survivors. To this end, a mixture cure rate model is proposed using the log-logistic distribution. The model is conveniently parameterized through the mode of the hazard function, in which cancer stages can affect both the cured fraction and the mode. In addition, we discuss aspects of model inference through the maximum likelihood estimation method. A Monte Carlo simulation study assesses the coverage probability of asymptotic confidence intervals.  相似文献   

5.
In this paper, we propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest follows the Negative Binomial distribution and the time to event follows a Weibull distribution. Indeed, we introduce the Weibull-Negative-Binomial (WNB) distribution, which can be used in order to model survival data when the hazard rate function is increasing, decreasing and some non-monotonous shaped. Another advantage of the proposed model is that it has some distributions commonly used in lifetime analysis as particular cases. Moreover, the proposed model includes as special cases some of the well-know cure rate models discussed in the literature. We consider a frequentist analysis for parameter estimation of a WNB model with cure rate. Then, we derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. Finally, the methodology is illustrated on a medical data.  相似文献   

6.
The purpose of this paper is to consider the problem of statistical inference about a hazard rate function that is specified as the product of a parametric regression part and a non-parametric baseline hazard. Unlike Cox's proportional hazard model, the baseline hazard not only depends on the duration variable, but also on the starting date of the phenomenon of interest. We propose a new estimator of the regression parameter which allows for non-stationarity in the hazard rate. We show that it is asymptotically normal at root- n and that its asymptotic variance attains the information bound for estimation of the regression coefficient. We also consider an estimator of the integrated baseline hazard, and determine its asymptotic properties. The finite sample performance of our estimators are studied.  相似文献   

7.
The hazard function plays an important role in reliability or survival studies since it describes the instantaneous risk of failure of items at a time point, given that they have not failed before. In some real life applications, abrupt changes in the hazard function are observed due to overhauls, major operations or specific maintenance activities. In such situations it is of interest to detect the location where such a change occurs and estimate the size of the change. In this paper we consider the problem of estimating a single change point in a piecewise constant hazard function when the observed variables are subject to random censoring. We suggest an estimation procedure that is based on certain structural properties and on least squares ideas. A simulation study is carried out to compare the performance of this estimator with two estimators available in the literature: an estimator based on a functional of the Nelson-Aalen estimator and a maximum likelihood estimator. The proposed least squares estimator tums out to be less biased than the other two estimators, but has a larger variance. We illustrate the estimation method on some real data sets.  相似文献   

8.
Abstract

In this paper, we consider a model with stochastic interest rate and stochastic mortality, which is driven by a Lévy process. Under the assumption that the stochastic mortality and interest rate are dependent, we discuss the valuation of life insurance contracts. Employing the method of change of measure together with the Bayes’ rule, we present the pricing formulas in closed form for the survival and death benefit models. Finally, numerical experiments illustrate the effects of some parameters.  相似文献   

9.
Abstract.  We propose a Bayesian semiparametric model for survival data with a cure fraction. We explicitly consider a finite cure time in the model, which allows us to separate the cured and the uncured populations. We take a mixture prior of a Markov gamma process and a point mass at zero to model the baseline hazard rate function of the entire population. We focus on estimating the cure threshold after which subjects are considered cured. We can incorporate covariates through a structure similar to the proportional hazards model and allow the cure threshold also to depend on the covariates. For illustration, we undertake simulation studies and a full Bayesian analysis of a bone marrow transplant data set.  相似文献   

10.
We consider the competing risks set-up. In many practical situations, the conditional probability of the cause of failure given the failure time is of direct interest. We propose to model the competing risks by the overall hazard rate and the conditional probabilities rather than the cause-specific hazards. We adopt a Bayesian smoothing approach for both quantities of interest. Illustrations are given at the end.  相似文献   

11.
Summary For technological applications it can be useful to identify some simple physical mechanisms, which, on the basis of the available knowledge of the production process, may suggest the most appropriate approach to statistical control of the random quantities of interest. For this purpose the notion of rupture point is introduced firstly. A rupture point is characterized bym randomly arising out of control states, assumed to be mutually exclusive and stochastically independent. Shewhart's control charts seem to represent the natural statistical tool for controlling a rupture point; however it is shown that they are fully justified only when the hazard rates attached to the causes of failure are constant. Otherwise, typically in the presence of time increasing hazard rates, Shewhart's control charts should be completed by a preventive intervention rule (preventive maintenance). In the second place, the notion of dynamic instability point is introduced, which is specifically characterized by assuming that the random quantity of interest is ruled by a stochastic differential equation with constant coefficients. By discretization, developed according to a possibly new approach, it is shown that the former model reduces to an equation error model, which is among the simplest used in adaptive control, and thus particularly easy to deal with in regard to parameter estimation and the definition of the optimum control rule.  相似文献   

12.
Geometric Anisotropic Spatial Point Pattern Analysis and Cox Processes   总被引:1,自引:0,他引:1  
We consider spatial point processes with a pair correlation function, which depends only on the lag vector between a pair of points. Our interest is in statistical models with a special kind of ‘structured’ anisotropy: the pair correlation function is geometric anisotropic if it is elliptical but not spherical. In particular, we study Cox process models with an elliptical pair correlation function, including shot noise Cox processes and log Gaussian Cox processes, and we develop estimation procedures using summary statistics and Bayesian methods. Our methodology is illustrated on real and synthetic datasets of spatial point patterns.  相似文献   

13.
14.
Survival studies usually collect on each participant, both duration until some terminal event and repeated measures of a time-dependent covariate. Such a covariate is referred to as an internal time-dependent covariate. Usually, some subjects drop out of the study before occurence of the terminal event of interest. One may then wish to evaluate the relationship between time to dropout and the internal covariate. The Cox model is a standard framework for that purpose. Here, we address this problem in situations where the value of the covariate at dropout is unobserved. We suggest a joint model which combines a first-order Markov model for the longitudinaly measured covariate with a time-dependent Cox model for the dropout process. We consider maximum likelihood estimation in this model and show how estimation can be carried out via the EM-algorithm. We state that the suggested joint model may have applications in the context of longitudinal data with nonignorable dropout. Indeed, it can be viewed as generalizing Diggle and Kenward's model (1994) to situations where dropout may occur at any point in time and may be censored. Hence we apply both models and compare their results on a data set concerning longitudinal measurements among patients in a cancer clinical trial.  相似文献   

15.
The additive risk model provides an alternative modelling technique for failure time data to the proportional hazards model. In this article, we consider the additive risk model with a nonparametric risk effect. We study estimation of the risk function and its derivatives with a parametric and an unspecified baseline hazard function respectively. The resulting estimators are the local likelihood and the local score estimators. We establish the asymptotic normality of the estimators and show that both methods have the same formula for asymptotic bias but different formula for variance. It is found that, in some special cases, the local score estimator is of the same efficiency as the local likelihood estimator though it does not use the information about the baseline hazard function. Another advantage of the local score estimator is that it has a closed form and is easy to implement. Some simulation studies are conducted to evaluate and compare the performance of the two estimators. A numerical example is used for illustration.  相似文献   

16.
Aoristic data can be described by a marked point process in time in which the points cannot be observed directly but are known to lie in observable intervals, the marks. We consider Bayesian state estimation for the latent points when the marks are modeled in terms of an alternating renewal process in equilibrium and the prior is a Markov point process. We derive the posterior distribution, estimate its parameters and present some examples that illustrate the influence of the prior distribution. The model is then used to estimate times of occurrence of interval censored crimes.  相似文献   

17.
In this article, we consider a single change point model for a sudden change in the hazard rate of Lindley distribution to model right-censored survival data. We derive the quantile function to generate random numbers from the proposed distribution by using the Lambert function. The maximum likelihood estimation method is used to estimate parameters of the change point model. A simulation study is also carried out to analyze the performance of the estimators. To validate our findings, a dataset on bone marrow transplant for patients of acute lymphoblastic leukemia is analyzed using the proposed model and is compared with the existing exponential single change point model.  相似文献   

18.
19.
The authors consider the problem of Bayesian variable selection for proportional hazards regression models with right censored data. They propose a semi-parametric approach in which a nonparametric prior is specified for the baseline hazard rate and a fully parametric prior is specified for the regression coefficients. For the baseline hazard, they use a discrete gamma process prior, and for the regression coefficients and the model space, they propose a semi-automatic parametric informative prior specification that focuses on the observables rather than the parameters. To implement the methodology, they propose a Markov chain Monte Carlo method to compute the posterior model probabilities. Examples using simulated and real data are given to demonstrate the methodology.  相似文献   

20.
With reference to a specific dataset, we consider how to perform a flexible non‐parametric Bayesian analysis of an inhomogeneous point pattern modelled by a Markov point process, with a location‐dependent first‐order term and pairwise interaction only. A priori we assume that the first‐order term is a shot noise process, and that the interaction function for a pair of points depends only on the distance between the two points and is a piecewise linear function modelled by a marked Poisson process. Simulation of the resulting posterior distribution using a Metropolis–Hastings algorithm in the ‘conventional’ way involves evaluating ratios of unknown normalizing constants. We avoid this problem by applying a recently introduced auxiliary variable technique. In the present setting, the auxiliary variable used is an example of a partially ordered Markov point process model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号