首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the sample size increases, the coefficient of skewness of the Fisher's transformation, z = (1/2) log ((l+r)/(l-r)), of the correlation coefficient decreases much more rapidly than the excess of its kurtosis. Hence, the usual normal approximation for its distribution can be improved by adjusting for the excess of its kurtosis. This is accomplished by mixing the approximating normal distribution with a logistic distribution. The resulting mixture approximation which can be used to estimate the probabilities, as well as the percentiles, compares favorably in both accuracy and simplicity, with the two best earlier approximations, namely, those due to Ruben (1966) and Kraemer (1973).  相似文献   

2.
We study the r-content Δ of the r -simplex generated by r+ 1 independent random points in R”. Each random point Zj is isotropic and distributed according to λ||Zj||2 ~ beta-type-2(n/2, v), λ, v > 0. We provide an asymptotic normality result which is analogous to the conjecture made by Miles (1971). A method is introduced to work out the exact density of W = (rλ)r(r!Δ)2/(r + |)r+l and hence that of Δ. The distribution of W is also related to some hypothesis-testing problems in multivariate analysis. Furthermore, by using this method, the distribution of W or Δ can easily be simulated.  相似文献   

3.
Let X1X2,.be i.i.d. random variables and let Un= (n r)-1S?(n,r) h (Xi1,., Xir,) be a U-statistic with EUn= v, v unknown. Assume that g(X1) =E[h(X1,.,Xr) - v |X1]has a strictly positive variance s?2. Further, let a be such that φ(a) - φ(-a) =α for fixed α, 0 < α < 1, where φ is the standard normal d.f., and let S2n be the Jackknife estimator of n Var Un. Consider the stopping times N(d)= min {n: S2n: + n-12a-2},d > 0, and a confidence interval for v of length 2d,of the form In,d= [Un,-d, Un + d]. We assume that Var Un is unknown, and hence, no fixed sample size method is available for finding a confidence interval for v of prescribed width 2d and prescribed coverage probability α Turning to a sequential procedure, let IN(d),d be a sequence of sequential confidence intervals for v. The asymptotic consistency of this procedure, i.e. limd → 0P(v ∈ IN(d),d)=α follows from Sproule (1969). In this paper, the rate at which |P(v ∈ IN(d),d) converges to α is investigated. We obtain that |P(v ∈ IN(d),d) - α| = 0 (d1/2-(1+k)/2(1+m)), d → 0, where K = max {0,4 - m}, under the condition that E|h(X1, Xr)|m < ∞m > 2. This improves and extends recent results of Ghosh & DasGupta (1980) and Mukhopadhyay (1981).  相似文献   

4.
In this paper, we obtain a new approximation of the Student's t distribution by using the symmetric generalized logistic (SGL) distribution function. The error of this approximation is shown to be 0(1/n2 )where nis the degrees of freedom of thetdistribution. In comparison to similar approximations by George and Ojo and George et al. (1986), this new approximation is much simpler and more accurate. It is also shown that under some conditions, the tdistribution is a good approximation of the SGL distribution. Therefore, the complicated expressions for the cumulants and moments of the SGL can be approximated by those of the t, distribution. Finally, numerical results are given.  相似文献   

5.
The adjusted r2 algorithm is a popular automated method for selecting the start time of the terminal disposition phase (tz) when conducting a noncompartmental pharmacokinetic data analysis. Using simulated data, the performance of the algorithm was assessed in relation to the ratio of the slopes of the preterminal and terminal disposition phases, the point of intercept of the terminal disposition phase with the preterminal disposition phase, the length of the terminal disposition phase captured in the concentration‐time profile, the number of data points present in the terminal disposition phase, and the level of variability in concentration measurement. The adjusted r2 algorithm was unable to identify tz accurately when there were more than three data points present in a profile's terminal disposition phase. The terminal disposition phase rate constant (λz) calculated based on the value of tz selected by the algorithm had a positive bias in all simulation data conditions. Tolerable levels of bias (median bias less than 5%) were achieved under conditions of low measurement variability. When measurement variability was high, tolerable levels of bias were attained only when the terminal phase time span was 4 multiples of t1/2 or longer. A comparison of the performance of the adjusted r2 algorithm, a simple r2 algorithm, and tz selection by visual inspection was conducted using a subset of the simulation data. In the comparison, the simple r2 algorithm performed as well as the adjusted r2 algorithm and the visual inspection method outperformed both algorithms. Recommendations concerning the use of the various tz selection methods are presented.  相似文献   

6.
Let (θ1,x1),…,(θn,xn) be independent and identically distributed random vectors with E(xθ) = θ and Var(x|θ) = a + bθ + cθ2. Let ti be the linear Bayes estimator of θi and θ~i be the linear empirical Bayes estimator of θi as proposed in Robbins (1983). When Ex and Var x are unknown to the statistician. The regret of using θ~i instead of ti because of ignorance of the mean and the variance is ri = E(θi ? θi)2 ?E(tii)2. Under appropriate conditions cumulative regret Rn = r1+…rn is shown to have a finite limit even when n tends to infinity. The limit can be explicitly computed in terms of a,b,c and the first four moments of x.  相似文献   

7.
Fisher's A statistic, often called the adjusted R2 statistic, is shown to be a close approximation to the maximum likelihood estimate of the multiple correlation coefficient, p2, based on the marginal distribution of R2. Expansions for the estimate are obtained. The same methods lead to maximum marginal likelihood estimators for the noncentrality parameters for noncentral X2 and F.  相似文献   

8.
For a general class of scalar stationary processes, essentially those for which the best linear predictor is the best predictor (in the mean square sense), it is shown that, under fairly minor additional conditions, the sample autocorrelations converge to the true values almost surely and hniformly in the lag, t, at a rate (T-1log T)1/2, where T is the sample size. For ARMA processes, if |t|(log T)a, a < ∞, the rate is the best possible, namely (T-1log log T)1/2. In particular the somewhat implausible condition, on the innovations, that E{ε(t)2| Ft-l} is constant is avoided in these results. The theorems are used to discuss autoregressive approximation. When the stationary process is a vector process the condition on the innovation sequence, ε(t), that E{ε(t)ε(t)| Ft-l} be constant, cannot be entirely avoided in relation to autoregressive approximation. This is also discussed.  相似文献   

9.
Let {X, Xn; n ≥ 1} be a sequence of real-valued iid random variables, 0 < r < 2 and p > 0. Let D = { A = (ank; 1 ≤ kn, n ≥ 1); ank, ? R and supn, k |an,k| < ∞}. Set Sn( A ) = ∑nk=1an, kXk for A ? D and n ≥ 1. This paper is devoted to determining conditions whereby E{supn ≥ 1, |Sn( A )|/n1/r}p < ∞ or E{supn ≥ 2 |Sn( A )|/2n log n)1/2}p < ∞ for every A ? D. This generalizes some earlier results, including those of Burkholder (1962), Choi and Sung (1987), Davis (1971), Gut (1979), Klass (1974), Siegmund (1969) and Teicher (1971).  相似文献   

10.
Fix r ≥ 1, and let {Mnr} be the rth largest of {X1,X2,…Xn}, where X1,X2,… is a sequence of i.i.d. random variables with distribution function F. It is proved that P[Mnr ≤ un i.o.] = 0 or 1 according as the series Σn=3Fn(un)(log log n)r/n converges or diverges, for any real sequence {un} such that n{1 -F(un)} is nondecreasing and divergent. This generalizes a result of Bamdorff-Nielsen (1961) in the case r = 1.  相似文献   

11.
The largest value of the constant c for which holds over the class of random variables X with non-zero mean and finite second moment, is c=π. Let the random variable (r.v.) X with distribution function F(·) have non-zero mean and finite second moment. In studying a certain random walk problem (Daley, 1976) we sought a bound on the characteristic function of the form for some positive constant c. Of course the inequality is non-trivial only provided that . This note establishes that the best possible constant c =π. The wider relevance of the result is we believe that it underlines the use of trigonometric inequalities in bounding the (modulus of a) c.f. (see e.g. the truncation inequalities in §12.4 of Loève (1963)). In the present case the bound thus obtained is the best possible bound, and is better than the bound (2) |1-?(θ)| ≥ |θEX|-θ2EX2\2 obtained by applying the triangular inequality to the relation which follows from a two-fold integration by parts in the defining equation (*). The treatment of the counter-example furnished below may also be of interest. To prove (1) with c=π, recall that sin u > u(1-u/π) (all real u), so Since |E sinθX|-|E sin(-θX)|, the modulus sign required in (1) can be inserted into (4). Observe that since sin u > u for u < 0, it is possible to strengthen (4) to (denoting max(0,x) by x+) To show that c=π is the best possible constant in (1), assume without loss of generality that EX > 0, and take θ > 0. Then (1) is equivalent to (6) c < θEX2/{EX-|1-?(θ)|/θ} for all θ > 0 and all r.v.s. X with EX > 0 and EX2. Consider the r.v. where 0 < x < 1 and 0 < γ < ∞. Then EX=1, EX2=1+γx2, From (4) it follows that |1-?(θ)| > 0 for 0 < |θ| <π|EX|/EX2 but in fact this positivity holds for 0 < |θ| < 2π|EX|/EX2 because by trigonometry and the Cauchy-Schwartz inequality, |1-?(θ)| > |Re(1-?(θ))| = |E(1-cosθX)| = 2|E sin2θX/2| (10) >2(E sinθX/2)2 (11) >(|θEX|-θ2EX2/2π)2/2 > 0, the inequality at (11) holding provided that |θEX|-θ2EX2/2π > 0, i.e., that 0 < |θ| < 2π|EX|/EX2. The random variable X at (7) with x= 1 shows that the range of positivity of |1-?(θ)| cannot in general be extended. If X is a non-negative r.v. with finite positive mean, then the identity shows that (1-?(θ))/iθEX is the c.f. of a non-negative random variable, and hence (13) |1-?(θ)| < |θEX| (all θ). This argument fans if pr{X < 0}pr{X> 0} > 0, but as a sharper alternative to (14) |1-?(θ)| < |θE|X||, we note (cf. (2) and (3)) first that (15) |1-?(θ)| < |θEX| +θ2EX2/2. For a bound that is more precise for |θ| close to 0, |1-?(θ)|2= (Re(1-?(θ)))2+ (Im?(θ))2 <(θ2EX2/2)2+(|θEX| +θ2EX2-/π)2, so (16) |1-?(θ)| <(|θEX| +θ2EX2-/π) + |θ|3(EX2)2/8|EX|.  相似文献   

12.
Let Z 1, Z 2, . . . be a sequence of independent Bernoulli trials with constant success and failure probabilities p = Pr(Z t  = 1) and q = Pr(Z t  = 0) = 1 − p, respectively, t = 1, 2, . . . . For any given integer k ≥ 2 we consider the patterns E1{\mathcal{E}_{1}}: two successes are separated by at most k−2 failures, E2{\mathcal{E}_{2}}: two successes are separated by exactly k −2 failures, and E3{\mathcal{E}_{3}} : two successes are separated by at least k − 2 failures. Denote by Nn,k(i){ N_{n,k}^{(i)}} (respectively Mn,k(i){M_{n,k}^{(i)}}) the number of occurrences of the pattern Ei{\mathcal{E}_{i}} , i = 1, 2, 3, in Z 1, Z 2, . . . , Z n when the non-overlapping (respectively overlapping) counting scheme for runs and patterns is employed. Also, let Tr,k(i){T_{r,k}^{(i)}} (resp. Wr,k(i)){W_{r,k}^{(i)})} be the waiting time for the rth occurrence of the pattern Ei{\mathcal{E}_{i}}, i = 1, 2, 3, in Z 1, Z 2, . . . according to the non-overlapping (resp. overlapping) counting scheme. In this article we conduct a systematic study of Nn,k(i){N_{n,k}^{(i)}}, Mn,k(i){M_{n,k}^{(i)}}, Tr,k(i){T_{r,k}^{(i)}} and Wr,k(i){W_{r,k}^{(i)}} (i = 1, 2, 3) obtaining exact formulae, explicit or recursive, for their probability generating functions, probability mass functions and moments. An application is given.  相似文献   

13.
A great deal of inference in statistics is based on making the approximation that a statistic is normally distributed. The error in doing so is generally O(n?1/2), where n is the sample size and can be considered when the distribution of the statistic is heavily biased or skewed. This note shows how one may reduce the error to O(n?(j+1)/2), where j is a given integer. The case considered is when the statistic is the mean of the sample values of a continuous distribution with a scale or location change after the sample has undergone an initial transformation, which may depend on an unknown parameter. The transformation corresponding to Fisher's score function yields an asymptotically efficient procedure.  相似文献   

14.
A Hadamard difference set (HDS) has the parameters (4N2, 2N2N, N2N). In the abelian case it is equivalent to a perfect binary array, which is a multidimensional matrix with elements ±1 such that all out-of-phase periodic autocorrelation coefficients are zero. We show that if a group of the form H × Z2pr contains a (hp2r, √hpr(2√hpr − 1), √hpr(√hpr − 1)) HDS (HDS), p a prime not dividing |H| = h and pj ≡ −1 (mod exp(H)) for some j, then H × Z2pt has a (hp2t, √hpt(2√hpt − 1), √hpt(√hpt − 1)) HDS for every 0⩽tr. Thus, if these families do not exist, we simply need to show that H × Z2p does not support a HDS. We give two examples of families that are ruled out by this procedure.  相似文献   

15.
Five transformations of the correlation coefficient, namely, Fisher's z, Nair's u, Sankaran's v, Ruben's y and Samiuddin's t are compared numerically using confidence intervals. Samiuddin's ts transformation is close to the exact nominal confidence level for a small sample size ≤ 25 from a bivariate normal density. For a sample size > 25 both Samiuddin's ts and Fisher's z can be used. In the presence of an outlier (on a minor axis), both Fisher's z and Samiuddin's ts are not affected as long as |p| ≤ 0.3 but are seriously affected when |p&| > 0.3.  相似文献   

16.
The linear hypothesis test procedure is considered in the restricted linear modelsM r = {y, Xβ |Rβ = 0, σ 2V} andM r * = {y, Xβ |ARβ = 0, σ 2V}. Necessary and sufficient conditions are derived under which the statistic providing anF-test for the linear hypothesisH 0:Kβ=0 in the modelM r * (Mr) continues to be valid in the modelM r (M r * ); the results obtained cover the case whereM r * is replaced by the general Gauss-Markov modelM = {y, Xβ, σ 2V}.  相似文献   

17.
The mixture of Rayleigh random variables X 1and X 2 are identified in terms of relations between the conditional expectation of ( X2:22 -X1:22)r{\left( {X_{2:2}^2 -X_{1:2}^2}\right)^{r}} given X 1:2 (or X2:22k{X_{2:2}^{2k}} given X1:2,"kr){X_{1:2},\forall k\leq r)} and hazard rate function of the distribution, where X 1:2 and X 2:2 denote the corresponding order statistics, r is a positive integer. In addition, we also mention some related theorems to characterize the mixtures of Rayleigh distributions. Finally, we also give an application to Multi-Hit models of carcinogenesis (Parallel Systems) and a simulated example is used to illustrate our results.  相似文献   

18.
Suppose that the length of time in years for which a business operates until failure has a Pareto distribution. Let t 1?t 2?t r denote the survival lifetimes of the first r of a random sample of n businesses. Bayesian predictions are to be made on the ordered failure times of the remaining (n???r) businesses, using the conditional probability function. Numerical examples are given to illustrate our results.  相似文献   

19.
A Bayesian analysis is provided for the Wilcoxon signed-rank statistic (T+). The Bayesian analysis is based on a sign-bias parameter φ on the (0, 1) interval. For the case of a uniform prior probability distribution for φ and for small sample sizes (i.e., 6 ? n ? 25), values for the statistic T+ are computed that enable probabilistic statements about φ. For larger sample sizes, approximations are provided for the asymptotic likelihood function P(T+|φ) as well as for the posterior distribution P(φ|T+). Power analyses are examined both for properly specified Gaussian sampling and for misspecified non Gaussian models. The new Bayesian metric has high power efficiency in the range of 0.9–1 relative to a standard t test when there is Gaussian sampling. But if the sampling is from an unknown and misspecified distribution, then the new statistic still has high power; in some cases, the power can be higher than the t test (especially for probability mixtures and heavy-tailed distributions). The new Bayesian analysis is thus a useful and robust method for applications where the usual parametric assumptions are questionable. These properties further enable a way to do a generic Bayesian analysis for many non Gaussian distributions that currently lack a formal Bayesian model.  相似文献   

20.
This paper provides a general method of modifying a statistic of interest in such a way that the distribution of the modified statistic can be approximated by an arbitrary reference distribution to an order of accuracy of O(n -1/2) or even O(n -1). The reference distribution is usually the asymptotic distribution of the original statistic. We prove that the multiplication of the statistic by a suitable stochastic correction improves the asymptotic approximation to its distribution. This paper extends the results of the closely related paper by Cordeiro and Ferrari (1991) to cope with several other statistical tests. The resulting expression for the adjustment factor requires knowledge of the Edgeworth-type expansion to order O(n-1) for the distribution of the unmodified statistic. In practice its functional form involves some derivatives of the reference distribution. Certain difference between the cumulants of appropriate order in n of the unmodified statistic and those of its first-order approximation, and the unmodified statistic itself. Some applications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号