共查询到20条相似文献,搜索用时 15 毫秒
1.
Robert Graham Clark 《Australian & New Zealand Journal of Statistics》2020,62(1):49-70
In outcome‐dependent sampling, the continuous or binary outcome variable in a regression model is available in advance to guide selection of a sample on which explanatory variables are then measured. Selection probabilities may either be a smooth function of the outcome variable or be based on a stratification of the outcome. In many cases, only data from the final sample is accessible to the analyst. A maximum likelihood approach for this data configuration is developed here for the first time. The likelihood for fully general outcome‐dependent designs is stated, then the special case of Poisson sampling is examined in more detail. The maximum likelihood estimator differs from the well‐known maximum sample likelihood estimator, and an information bound result shows that the former is asymptotically more efficient. A simulation study suggests that the efficiency difference is generally small. Maximum sample likelihood estimation is therefore recommended in practice when only sample data is available. Some new smooth sample designs show considerable promise. 相似文献
2.
A log-linear model is defined for multiway contingency tables with negative multinomial frequency counts. The maximum likelihood estimator of the model parameters and the estimator covariance matrix is given. The likelihood ratio test for the general log-linear hypothesis also is presented. 相似文献
3.
Kanchan Mukherjee 《Revue canadienne de statistique》2006,34(2):341-356
The author presents asymptotic results for the class of pseudo‐likelihood estimators in the autoregressive conditional heteroscedastic models introduced by Engle (1982). Unlike what is required for the quasi‐likelihood estimator, some estimators in the class he considers do not require the finiteness of the fourth moment of the error density. Thus his method is applicable to heavy‐tailed error distributions for which moments higher than two may not exist. 相似文献
4.
In this paper we consider models involving the convex hull operation of the parameter and the noise i.e. Yi = CH(A, XX). Then we generalize the basic models to ANOVA models; i.e. Yij=CH(A∪Bj,Xij). In some cases the consistent estimators for the J U new parameters are derived. Assuming the existence of density forrandom convex sets, we derive the likelihood for the convex hull model. We then find the maximum Likelihood Estimators for the parameters. Examples for some random convex sets with finite dimensional distributions are derived to show how good these estimators are. 相似文献
5.
Fatemeh Sogandi 《统计学通讯:模拟与计算》2017,46(3):2207-2227
In this article, a maximum likelihood estimator is derived in the generalized linear model-based regression profiles under monotonic change in Phase II. The performance of the proposed estimator is comprehensively investigated through some special cases, and compared with estimators under step change and drift. The results show that the proposed estimator has better performance in small and medium shifts under different increasing changes. Finally, the applicability of the proposed estimator is illustrated using a real case. 相似文献
6.
Li Yan 《Statistics》2015,49(5):978-988
Empirical likelihood inference for generalized linear models with fixed and adaptive designs is considered. It is shown that the empirical log-likelihood ratio at the true parameters converges to the standard chi-square distribution. Furthermore, we obtain the maximum empirical likelihood estimate of the unknown parameter and the resulting estimator is shown to be asymptotically normal. Some simulations are conducted to illustrate the proposed method. 相似文献
7.
J. Mazucheli 《Journal of Statistical Computation and Simulation》2018,88(6):1027-1038
Cooray and Ananda introduced a two-parameter generalized Half-Normal distribution which is useful for modelling lifetime data, while its maximum likelihood estimators (MLEs) are biased in finite samples. This motivates us to construct nearly unbiased estimators for the unknown parameters of the model. In this paper, we adopt two approaches for bias reduction of the MLEs of the parameters of generalized Half-Normal distribution. The first approach is the analytical methodology suggested by Cox and Snell and the second is based on parametric Bootstrap resampling method. Additionally, the method of moments (MMEs) is used for comparison purposes. The numerical evidence shows that the analytic bias-corrected estimators significantly outperform their bootstrapped-based counterpart for small and moderate samples as well as for MLEs and MMEs. Also, it is apparent from the results that bias- corrected estimates of shape parameter perform better than that of scale parameter. Further, the results show that bias-correction scheme yields nearly unbiased estimates. Finally, six fracture toughness real data sets illustrate the application of our methods. 相似文献
8.
Malay Ghosh James V. Zidek Tapabrata Maiti Rick White 《Revue canadienne de statistique》2004,32(2):139-157
The authors propose a weighted likelihood concept for the estimation of parameters in natural exponential families with quadratic variance. They apply the results to both simulated and real data. 相似文献
9.
We consider a random regression model with several-fold change-points. The results for one change-point are generalized. The maximum likelihood estimator of the parameters is shown to be consistent, and the asymptotic distribution for the estimators of the coefficients is shown to be Gaussian. The estimators of the change-points converge, with n ?1 rate, to the vector whose components are the left end points of the maximizing interval with respect to each change-point. The likelihood process is asymptotically equivalent to the sum of independent compound Poisson processes. 相似文献
10.
Semi‐parametric small‐area estimation by combining time‐series and cross‐sectional data methods 下载免费PDF全文
In survey sampling, policymaking regarding the allocation of resources to subgroups (called small areas) or the determination of subgroups with specific properties in a population should be based on reliable estimates. Information, however, is often collected at a different scale than that of these subgroups; hence, the estimation can only be obtained on finer scale data. Parametric mixed models are commonly used in small‐area estimation. The relationship between predictors and response, however, may not be linear in some real situations. Recently, small‐area estimation using a generalised linear mixed model (GLMM) with a penalised spline (P‐spline) regression model, for the fixed part of the model, has been proposed to analyse cross‐sectional responses, both normal and non‐normal. However, there are many situations in which the responses in small areas are serially dependent over time. Such a situation is exemplified by a data set on the annual number of visits to physicians by patients seeking treatment for asthma, in different areas of Manitoba, Canada. In cases where covariates that can possibly predict physician visits by asthma patients (e.g. age and genetic and environmental factors) may not have a linear relationship with the response, new models for analysing such data sets are required. In the current work, using both time‐series and cross‐sectional data methods, we propose P‐spline regression models for small‐area estimation under GLMMs. Our proposed model covers both normal and non‐normal responses. In particular, the empirical best predictors of small‐area parameters and their corresponding prediction intervals are studied with the maximum likelihood estimation approach being used to estimate the model parameters. The performance of the proposed approach is evaluated using some simulations and also by analysing two real data sets (precipitation and asthma). 相似文献
11.
K. S. Man 《统计学通讯:理论与方法》2013,42(3):677-697
This paper proposes an effective reparameterization method for the maximum likelihood estimation of a nearly random walk ARIMA (1,1,1) model, an important case where standard method of locating the MLE is not satisfactory. This model is equivalent to the permanent and temporary components model that Fama &French (1988) and others used to capture the slow mean reversion behavior of stock prices. The reparameterization method we prppose for estimating the nearly cancelled AR and MA parameters performs satisfactorily. The exact likelihood function based on the transformed parameters is studied. We argue that the region of interest will get magnified and emphasized in the transformed space, thus making the search for MLE more thorough and effective. Substantiai simuiation evidences are provided to demonstrate the effectiveness of the method. The sample size requirement is critical and is discussed in details. For application, this method is applied to estimate a nearly random walk ARIMA (1,1,1) model for NYSE/AMEX value-weighted market return in daily and longer holding-period horizons. 相似文献
12.
Gauss M. Cordeiro & Klaus L.P. Vasconcellos 《Australian & New Zealand Journal of Statistics》1999,41(2):189-198
This paper discusses issues related to the improvement of maximum likelihood estimates in von Mises regression models. It obtains general matrix expressions for the second-order biases of maximum likelihood estimates of the mean parameters and concentration parameters. The formulae are simple to compute, and give the biases by means of weighted linear regressions. Simulation results are presented assessing the performance of corrected maximum likelihood estimates in these models. 相似文献
13.
Toshinao Yoshiba 《Journal of Statistical Computation and Simulation》2018,88(13):2489-2506
The multivariate Student-t copula family is used in statistical finance and other areas when there is tail dependence in the data. It often is a good-fitting copula but can be improved on when there is tail asymmetry. Multivariate skew-t copula families can be considered when there is tail dependence and tail asymmetry, and we show how a fast numerical implementation for maximum likelihood estimation is possible. For the copula implicit in a multivariate skew-t distribution, the fast implementation makes use of (i) monotone interpolation of the univariate marginal quantile function and (ii) a re-parametrization of the correlation matrix. Our numerical approach is tested with simulated data with data-driven parameters. A real data example involves the daily returns of three stock indices: the Nikkei225, S&P500 and DAX. With both unfiltered returns and GARCH/EGARCH filtered returns, we compare the fits of the Azzalini–Capitanio skew-t, generalized hyperbolic skew-t, Student-t, skew-Normal and Normal copulas. 相似文献
14.
15.
Ruiqin Tian 《Statistics》2017,51(5):988-1005
In this paper, empirical likelihood inference for longitudinal data within the framework of partial linear regression models are investigated. The proposed procedures take into consideration the correlation within groups without involving direct estimation of nuisance parameters in the correlation matrix. The empirical likelihood method is used to estimate the regression coefficients and the baseline function, and to construct confidence intervals. A nonparametric version of Wilk's theorem for the limiting distribution of the empirical likelihood ratio is derived. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. The finite sample behaviour of the proposed method is evaluated with simulation and illustrated with an AIDS clinical trial data set. 相似文献
16.
《Journal of Statistical Computation and Simulation》2012,82(11):1301-1315
A generalized version of inverted exponential distribution (IED) is introduced in this paper. This lifetime distribution is capable of modelling various shapes of failure rates, and hence various shapes of ageing criteria. The model can be considered as another useful two-parameter generalization of the IED. Statistical and reliability properties of the generalized inverted exponential distribution are derived. Maximum likelihood estimation and least square estimation are used to evaluate the parameters and the reliability of the distribution. Properties of the estimates are also studied. 相似文献
17.
《Journal of Statistical Computation and Simulation》2012,82(7):729-745
This article considers the maximum likelihood estimation (MLE) of a class of stationary and invertible vector autoregressive fractionally integrated moving-average (VARFIMA) processes considered in Equation (26) of Luceño [A fast likelihood approximation for vector general linear processes with long series: Application to fractional differencing, Biometrika 83 (1996), pp. 603–614] or Model A of Lobato [Consistency of the averaged cross-periodogram in long memory series, J. Time Ser. Anal. 18 (1997), pp. 137–155] where each component y i, t is a fractionally integrated process of order d i , i=1, …, r. Under the conditions outlined in Assumption 1 of this article, the conditional likelihood function of this class of VARFIMA models can be efficiently and exactly calculated with a conditional likelihood Durbin–Levinson (CLDL) algorithm proposed herein. This CLDL algorithm is based on the multivariate Durbin–Levinson algorithm of Whittle [On the fitting of multivariate autoregressions and the approximate canonical factorization of a spectral density matrix, Biometrika 50 (1963), pp. 129–134] and the conditional likelihood principle of Box and Jenkins [Time Series Analysis, Forecasting, and Control, 2nd ed., Holden-Day, San Francisco, CA]. Furthermore, the conditions in the aforementioned Assumption 1 are general enough to include the model considered in Andersen et al. [Modeling and forecasting realized volatility, Econometrica 71 (2003), 579–625] for describing the behaviour of realized volatility and the model studied in Haslett and Raftery [Space–time modelling with long-memory dependence: Assessing Ireland's wind power resource, Appl. Statist. 38 (1989), pp. 1–50] for spatial data as its special cases. As the computational cost of implementing the CLDL algorithm is much lower than that of using the algorithms proposed in Sowell [Maximum likelihood estimation of fractionally integrated time series models, Working paper, Carnegie-Mellon University], we are thus able to conduct a Monte Carlo experiment to investigate the finite sample performance of the CLDL algorithm for the 3-dimensional VARFIMA processes with the sample size of 400. The simulation results are very satisfactory and reveal the great potentials of using the CLDL method for empirical applications. 相似文献
18.
Continuing increases in computing power and availability mean that many maximum likelihood estimation (MLE) problems previously thought intractable or too computationally difficult can now be tackled numerically. However, ML parameter estimation for distributions whose only analytical expression is as quantile functions has received little attention. Numerical MLE procedures for parameters of new families of distributions, the g-and-k and the generalized g-and-h distributions, are presented and investigated here. Simulation studies are included, and the appropriateness of using asymptotic methods examined. Because of the generality of these distributions, the investigations are not only into numerical MLE for these distributions, but are also an initial investigation into the performance and problems for numerical MLE applied to quantile-defined distributions in general. Datasets are also fitted using the procedures here. Results indicate that sample sizes significantly larger than 100 should be used to obtain reliable estimates through maximum likelihood. 相似文献
19.
Byungtae Seo 《Journal of Statistical Computation and Simulation》2015,85(1):202-215
In this paper, we propose a new generalized autoregressive conditional heteroskedastic (GARCH) model using infinite normal scale-mixtures which can suitably avoid order selection problems in the application of finite normal scale-mixtures. We discuss its theoretical properties and develop a two-stage algorithm for the maximum likelihood estimator to estimate the mixing distribution non-parametric maximum likelihood estimator (NPMLE) as well as GARCH parameters (two-stage MLE). For the estimation of a mixing distribution, we employ a fast computational algorithm proposed by Wang [On fast computation of the non-parametric maximum likelihood estimate of a mixing distribution. J R Stat Soc Ser B. 2007;69:185–198] under the gradient characterization of the non-parametric mixture likelihood. The GARCH parameters are then estimated either using the expectation-mazimization algorithm or general optimization scheme. In addition, we propose a new forecasting algorithm of value-at-risk (VaR) using the two-stage MLE and the NPMLE. Through a simulation study and real data analysis, we compare the performance of the two-stage MLE with the existing ones including quasi-maximum likelihood estimator based on the standard normal density and the finite normal mixture quasi maximum estimated-likelihood estimator (cf. Lee S, Lee T. Inference for Box–Cox transformed threshold GARCH models with nuisance parameters. Scand J Stat. 2012;39:568–589) in terms of the relative efficiency and accuracy of VaR forecasting. 相似文献
20.
Chris Orme 《Econometric Reviews》1989,8(2):217-222
In this short note it is demonstrated that although the log-likelihood function for the truncated normal regression model may not be globally concave, it will possess a unique maximum if one exists. This is because the hessian matrix is negative semi-definite when evaluated at any possible solution to the likelihood equations. Since this rules out any saddle points or local minima, more than two local maxima occuring is impossible. 相似文献