首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
A cancer clinical trial with an immunotherapy often has 2 special features, which are patients being potentially cured from the cancer and the immunotherapy starting to take clinical effect after a certain delay time. Existing testing methods may be inadequate for immunotherapy clinical trials, because they do not appropriately take the 2 features into consideration at the same time, hence have low power to detect the true treatment effect. In this paper, we proposed a piece‐wise proportional hazards cure rate model with a random delay time to fit data, and a new weighted log‐rank test to detect the treatment effect of an immunotherapy over a chemotherapy control. We showed that the proposed weight was nearly optimal under mild conditions. Our simulation study showed a substantial gain of power in the proposed test over the existing tests and robustness of the test with misspecified weight. We also introduced a sample size calculation formula to design the immunotherapy clinical trials using the proposed weighted log‐rank test.  相似文献   

2.
The indirect mechanism of action of immunotherapy causes a delayed treatment effect, producing delayed separation of survival curves between the treatment groups, and violates the proportional hazards assumption. Therefore using the log‐rank test in immunotherapy trial design could result in a severe loss efficiency. Although few statistical methods are available for immunotherapy trial design that incorporates a delayed treatment effect, recently, Ye and Yu proposed the use of a maximin efficiency robust test (MERT) for the trial design. The MERT is a weighted log‐rank test that puts less weight on early events and full weight after the delayed period. However, the weight function of the MERT involves an unknown function that has to be estimated from historical data. Here, for simplicity, we propose the use of an approximated maximin test, the V0 test, which is the sum of the log‐rank test for the full data set and the log‐rank test for the data beyond the lag time point. The V0 test fully uses the trial data and is more efficient than the log‐rank test when lag exits with relatively little efficiency loss when no lag exists. The sample size formula for the V0 test is derived. Simulations are conducted to compare the performance of the V0 test to the existing tests. A real trial is used to illustrate cancer immunotherapy trial design with delayed treatment effect.  相似文献   

3.
A challenge arising in cancer immunotherapy trial design is the presence of a delayed treatment effect wherein the proportional hazard assumption no longer holds true. As a result, a traditional survival trial design based on the standard log‐rank test, which ignores the delayed treatment effect, will lead to substantial loss of statistical power. Recently, a piecewise weighted log‐rank test is proposed to incorporate the delayed treatment effect into consideration of the trial design. However, because the sample size formula was derived under a sequence of local alternative hypotheses, it results in an underestimated sample size when the hazard ratio is relatively small for a balanced trial design and an inaccurate sample size estimation for an unbalanced design. In this article, we derived a new sample size formula under a fixed alternative hypothesis for the delayed treatment effect model. Simulation results show that the new formula provides accurate sample size estimation for both balanced and unbalanced designs.  相似文献   

4.
Recently, molecularly targeted agents and immunotherapy have been advanced for the treatment of relapse or refractory cancer patients, where disease progression‐free survival or event‐free survival is often a primary endpoint for the trial design. However, methods to evaluate two‐stage single‐arm phase II trials with a time‐to‐event endpoint are currently processed under an exponential distribution, which limits application of real trial designs. In this paper, we developed an optimal two‐stage design, which is applied to the four commonly used parametric survival distributions. The proposed method has advantages compared with existing methods in that the choice of underlying survival model is more flexible and the power of the study is more adequately addressed. Therefore, the proposed two‐stage design can be routinely used for single‐arm phase II trial designs with a time‐to‐event endpoint as a complement to the commonly used Simon's two‐stage design for the binary outcome.  相似文献   

5.
Phase II clinical trials designed for evaluating a drug's treatment effect can be either single‐arm or double‐arm. A single‐arm design tests the null hypothesis that the response rate of a new drug is lower than a fixed threshold, whereas a double‐arm scheme takes a more objective comparison of the response rate between the new treatment and the standard of care through randomization. Although the randomized design is the gold standard for efficacy assessment, various situations may arise where a single‐arm pilot study prior to a randomized trial is necessary. To combine the single‐ and double‐arm phases and pool the information together for better decision making, we propose a Single‐To‐double ARm Transition design (START) with switching hypotheses tests, where the first stage compares the new drug's response rate with a minimum required level and imposes a continuation criterion, and the second stage utilizes randomization to determine the treatment's superiority. We develop a software package in R to calibrate the frequentist error rates and perform simulation studies to assess the trial characteristics. Finally, a metastatic pancreatic cancer trial is used for illustrating the decision rules under the proposed START design.  相似文献   

6.
Clinical phase II trials in oncology are conducted to determine whether the activity of a new anticancer treatment is promising enough to merit further investigation. Two‐stage designs are commonly used for this situation to allow for early termination. Designs proposed in the literature so far have the common drawback that the sample sizes for the two stages have to be specified in the protocol and have to be adhered to strictly during the course of the trial. As a consequence, designs that allow a higher extent of flexibility are desirable. In this article, we propose a new adaptive method that allows an arbitrary modification of the sample size of the second stage using the results of the interim analysis or external information while controlling the type I error rate. If the sample size is not changed during the trial, the proposed design shows very similar characteristics to the optimal two‐stage design proposed by Chang et al. (Biometrics 1987; 43:865–874). However, the new design allows the use of mid‐course information for the planning of the second stage, thus meeting practical requirements when performing clinical phase II trials in oncology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The current practice of designing single‐arm phase II survival trials is limited under the exponential model. Trial design under the exponential model may not be appropriate when a portion of patients are cured. There is no literature available for designing single‐arm phase II trials under the parametric cure model. In this paper, a test statistic is proposed, and a sample size formula is derived for designing single‐arm phase II trials under a class of parametric cure models. Extensive simulations showed that the proposed test and sample size formula perform very well under different scenarios. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In recent years, immunological science has evolved, and cancer vaccines are now approved and available for treating existing cancers. Because cancer vaccines require time to elicit an immune response, a delayed treatment effect is expected and is actually observed in drug approval studies. Accordingly, we propose the evaluation of survival endpoints by weighted log‐rank tests with the Fleming–Harrington class of weights. We consider group sequential monitoring, which allows early efficacy stopping, and determine a semiparametric information fraction for the Fleming–Harrington family of weights, which is necessary for the error spending function. Moreover, we give a flexible survival model in cancer vaccine studies that considers not only the delayed treatment effect but also the long‐term survivors. In a Monte Carlo simulation study, we illustrate that when the primary analysis is a weighted log‐rank test emphasizing the late differences, the proposed information fraction can be a useful alternative to the surrogate information fraction, which is proportional to the number of events. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The standard log-rank test has been extended by adopting various weight functions. Cancer vaccine or immunotherapy trials have shown a delayed onset of effect for the experimental therapy. This is manifested as a delayed separation of the survival curves. This work proposes new weighted log-rank tests to account for such delay. The weight function is motivated by the time-varying hazard ratio between the experimental and the control therapies. We implement a numerical evaluation of the Schoenfeld approximation (NESA) for the mean of the test statistic. The NESA enables us to assess the power and to calculate the sample size for detecting such delayed treatment effect and also for a more general specification of the non-proportional hazards in a trial. We further show a connection between our proposed test and the weighted Cox regression. Then the average hazard ratio using the same weight is obtained as an estimand of the treatment effect. Extensive simulation studies are conducted to compare the performance of the proposed tests with the standard log-rank test and to assess their robustness to model mis-specifications. Our tests outperform the Gρ,γ class in general and have performance close to the optimal test. We demonstrate our methods on two cancer immunotherapy trials.  相似文献   

10.
For two‐arm randomized phase II clinical trials, previous literature proposed an optimal design that minimizes the total sample sizes subject to multiple constraints on the standard errors of the estimated event rates and their difference. The original design is limited to trials with dichotomous endpoints. This paper extends the original approach to be applicable to phase II clinical trials with endpoints from the exponential dispersion family distributions. The proposed optimal design minimizes the total sample sizes needed to provide estimates of population means of both arms and their difference with pre‐specified precision. Its applications on data from specific distribution families are discussed under multiple design considerations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In recent years, immunological science has evolved, and cancer vaccines are available for treating existing cancers. Because cancer vaccines require time to elicit an immune response, a delayed treatment effect is expected. Accordingly, the use of weighted log‐rank tests with the Fleming–Harrington class of weights is proposed for evaluation of survival endpoints. We present a method for calculating the sample size under assumption of a piecewise exponential distribution for the cancer vaccine group and an exponential distribution for the placebo group as the survival model. The impact of delayed effect timing on both the choice of the Fleming–Harrington's weights and the increment in the required number of events is discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The win ratio has been studied methodologically and applied in data analysis and in designing clinical trials. Researchers have pointed out that the results depend on follow‐up time and censoring time, which are sometimes used interchangeably. In this article, we distinguish between follow‐up time and censoring time, show theoretically the impact of censoring on the win ratio, and illustrate the impact of follow‐up time. We then point out that, if the treatment has long‐term benefit from a more important but less frequent endpoint (eg, death), the win ratio can show that benefit by following patients longer, avoiding masking by more frequent but less important outcomes, which occurs in conventional time‐to‐first‐event analyses. For the situation of nonproportional hazards, we demonstrate that the win ratio can be a good alternative to methods such as landmark survival rate, restricted mean survival time, and weighted log‐rank tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号