共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods for exploring treatment effect heterogeneity in subgroup analysis: an application to global clinical trials 下载免费PDF全文
Multi‐country randomised clinical trials (MRCTs) are common in the medical literature, and their interpretation has been the subject of extensive recent discussion. In many MRCTs, an evaluation of treatment effect homogeneity across countries or regions is conducted. Subgroup analysis principles require a significant test of interaction in order to claim heterogeneity of treatment effect across subgroups, such as countries in an MRCT. As clinical trials are typically underpowered for tests of interaction, overly optimistic expectations of treatment effect homogeneity can lead researchers, regulators and other stakeholders to over‐interpret apparent differences between subgroups even when heterogeneity tests are insignificant. In this paper, we consider some exploratory analysis tools to address this issue. We present three measures derived using the theory of order statistics, which can be used to understand the magnitude and the nature of the variation in treatment effects that can arise merely as an artefact of chance. These measures are not intended to replace a formal test of interaction but instead provide non‐inferential visual aids, which allow comparison of the observed and expected differences between regions or other subgroups and are a useful supplement to a formal test of interaction. We discuss how our methodology differs from recently published methods addressing the same issue. A case study of our approach is presented using data from the Study of Platelet Inhibition and Patient Outcomes (PLATO), which was a large cardiovascular MRCT that has been the subject of controversy in the literature. An R package is available that implements the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
2.
Andrew Bate Christy Chuang‐Stein Andrew Roddam Byron Jones 《Pharmaceutical statistics》2019,18(1):65-77
Networks of constellations of longitudinal observational databases, often electronic medical records or transactional insurance claims or both, are increasingly being used for studying the effects of medicinal products in real‐world use. Such databases are frequently configured as distributed networks. That is, patient‐level data are kept behind firewalls and not communicated outside of the data vendor other than in aggregate form. Instead, data are standardized across the network, and queries of the network are executed locally by data partners, and summary results provided to a central research partner(s) for amalgamation, aggregation, and summarization. Such networks can be huge covering years of data on upwards of 100 million patients. Examples of such networks include the FDA Sentinel Network, ASPEN, CNODES, and EU‐ADR. As this is a new emerging field, we note in this paper the conceptual similarities and differences between the analysis of distributed networks and the now well‐established field of meta‐analysis of randomized clinical trials (RCTs). We recommend, wherever appropriate, to apply learnings from meta‐analysis to help guide the development of distributed network analyses of longitudinal observational databases. 相似文献
3.
Statistical approaches for addressing multiplicity in clinical trials range from the very conservative (the Bonferroni method) to the least conservative the fixed sequence approach. Recently, several authors proposed methods that combine merits of the two extreme approaches. Wiens [2003. A fixed sequence Bonferroni procedure for testing multiple endpoints. Pharmaceutical Statist. 2003, 2, 211–215], for example, considered an extension of the Bonferroni approach where the type I error rate (α) is allocated among the endpoints, however, testing proceeds in a pre-determined order allowing the type I error rate to be saved for later use as long as the null hypotheses are rejected. This leads to a higher power of the test in testing later null hypotheses. In this paper, we consider an extension of Wiens’ approach by taking into account correlations among endpoints for achieving higher flexibility in testing. We show strong control of the family-wise type I error rate for this extension and provide critical values and significance levels for testing up to three endpoints with equal correlations and show how to calculate them for other correlation structures. We also present results of a simulation experiment for comparing the power of the proposed method with those of Wiens’ and others. The results of this experiment show that the magnitude of the gain in power of the proposed method depends on the prospective ordering of testing of the endpoints, the magnitude of the treatment effects of the endpoints and the magnitude of correlation between endpoints. Finally, we consider applications of the proposed method for clinical trials with multiple time points and multiple doses, where correlations among endpoints frequently arise. 相似文献
4.
5.
A note about the identifiability of causal effect estimates in randomized trials with non-compliance
We show that assumptions that are sufficient for estimating an average treatment effect in randomized trials with non-compliance restrict the subgroup means for always takers, compliers, defiers and never takers to a two-dimensional linear subspace of a four-dimensional space. Implications and special cases are exemplified. 相似文献
6.
We consider the problem of proving noninferiority when the comparison is based on ordered categorical data. We apply a rank test based on the Wilcoxon–Mann–Whitney effect where the asymptotic variance is estimated consistently under the alternative and a small‐sample approximation is given. We give the associated 100(1?α)% confidence interval and propose a formula for sample size determination. Finally, we illustrate the procedure and possible choices of the noninferiority margin using data from a clinical trial. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
7.
In clinical trials with survival data, investigators may wish to re-estimate the sample size based on the observed effect size while the trial is ongoing. Besides the inflation of the type-I error rate due to sample size re-estimation, the method for calculating the sample size in an interim analysis should be carefully considered because the data in each stage are mutually dependent in trials with survival data. Although the interim hazard estimate is commonly used to re-estimate the sample size, the estimate can sometimes be considerably higher or lower than the hypothesized hazard by chance. We propose an interim hazard ratio estimate that can be used to re-estimate the sample size under those circumstances. The proposed method was demonstrated through a simulation study and an actual clinical trial as an example. The effect of the shape parameter for the Weibull survival distribution on the sample size re-estimation is presented. 相似文献
8.
The objective of this research was to demonstrate a framework for drawing inference from sensitivity analyses of incomplete longitudinal clinical trial data via a re‐analysis of data from a confirmatory clinical trial in depression. A likelihood‐based approach that assumed missing at random (MAR) was the primary analysis. Robustness to departure from MAR was assessed by comparing the primary result to those from a series of analyses that employed varying missing not at random (MNAR) assumptions (selection models, pattern mixture models and shared parameter models) and to MAR methods that used inclusive models. The key sensitivity analysis used multiple imputation assuming that after dropout the trajectory of drug‐treated patients was that of placebo treated patients with a similar outcome history (placebo multiple imputation). This result was used as the worst reasonable case to define the lower limit of plausible values for the treatment contrast. The endpoint contrast from the primary analysis was ? 2.79 (p = .013). In placebo multiple imputation, the result was ? 2.17. Results from the other sensitivity analyses ranged from ? 2.21 to ? 3.87 and were symmetrically distributed around the primary result. Hence, no clear evidence of bias from missing not at random data was found. In the worst reasonable case scenario, the treatment effect was 80% of the magnitude of the primary result. Therefore, it was concluded that a treatment effect existed. The structured sensitivity framework of using a worst reasonable case result based on a controlled imputation approach with transparent and debatable assumptions supplemented a series of plausible alternative models under varying assumptions was useful in this specific situation and holds promise as a generally useful framework. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
9.
Missing data in clinical trials is a well‐known problem, and the classical statistical methods used can be overly simple. This case study shows how well‐established missing data theory can be applied to efficacy data collected in a long‐term open‐label trial with a discontinuation rate of almost 50%. Satisfaction with treatment in chronically constipated patients was the efficacy measure assessed at baseline and every 3 months postbaseline. The improvement in treatment satisfaction from baseline was originally analyzed with a paired t‐test ignoring missing data and discarding the correlation structure of the longitudinal data. As the original analysis started from missing completely at random assumptions regarding the missing data process, the satisfaction data were re‐examined, and several missing at random (MAR) and missing not at random (MNAR) techniques resulted in adjusted estimate for the improvement in satisfaction over 12 months. Throughout the different sensitivity analyses, the effect sizes remained significant and clinically relevant. Thus, even for an open‐label trial design, sensitivity analysis, with different assumptions for the nature of dropouts (MAR or MNAR) and with different classes of models (selection, pattern‐mixture, or multiple imputation models), has been found useful and provides evidence towards the robustness of the original analyses; additional sensitivity analyses could be undertaken to further qualify robustness. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
10.
Clinical trials are often designed to compare continuous non‐normal outcomes. The conventional statistical method for such a comparison is a non‐parametric Mann–Whitney test, which provides a P‐value for testing the hypothesis that the distributions of both treatment groups are identical, but does not provide a simple and straightforward estimate of treatment effect. For that, Hodges and Lehmann proposed estimating the shift parameter between two populations and its confidence interval (CI). However, such a shift parameter does not have a straightforward interpretation, and its CI contains zero in some cases when Mann–Whitney test produces a significant result. To overcome the aforementioned problems, we introduce the use of the win ratio for analysing such data. Patients in the new and control treatment are formed into all possible pairs. For each pair, the new treatment patient is labelled a ‘winner’ or a ‘loser’ if it is known who had the more favourable outcome. The win ratio is the total number of winners divided by the total numbers of losers. A 95% CI for the win ratio can be obtained using the bootstrap method. Statistical properties of the win ratio statistic are investigated using two real trial data sets and six simulation studies. Results show that the win ratio method has about the same power as the Mann–Whitney method. We recommend the use of the win ratio method for estimating the treatment effect (and CI) and the Mann–Whitney method for calculating the P‐value for comparing continuous non‐Normal outcomes when the amount of tied pairs is small. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
11.
Michael C. Donohue Oliver Langford Philip S. Insel Christopher H. van Dyck Ronald C. Petersen Suzanne Craft Gopalan Sethuraman Rema Raman Paul S. Aisen For the Alzheimer's Disease Neuroimaging Initiative 《Pharmaceutical statistics》2023,22(3):508-519
Mixed model repeated measures (MMRM) is the most common analysis approach used in clinical trials for Alzheimer's disease and other progressive diseases measured with continuous outcomes over time. The model treats time as a categorical variable, which allows an unconstrained estimate of the mean for each study visit in each randomized group. Categorizing time in this way can be problematic when assessments occur off-schedule, as including off-schedule visits can induce bias, and excluding them ignores valuable information and violates the intention to treat principle. This problem has been exacerbated by clinical trial visits which have been delayed due to the COVID19 pandemic. As an alternative to MMRM, we propose a constrained longitudinal data analysis with natural cubic splines that treats time as continuous and uses test version effects to model the mean over time. Compared to categorical-time models like MMRM and models that assume a proportional treatment effect, the spline model is shown to be more parsimonious and precise in real clinical trial datasets, and has better power and Type I error in a variety of simulation scenarios. 相似文献
12.
H.C.C.H Coolen J.L.A. Van Rijckevorsel H.J. Duivenvoorden A.H.B. Schuurs 《统计学通讯:理论与方法》2013,42(2):437-450
Data resulting from behavioral dental research, usually categorical or discretized and having unknown measurement and distributional characteristics, often cannot be analyzed with classical multivariate techniques. A non linear principal components technique called multiple correspondence analysis is presented with its corresponding computer program that can handle this kind of data. The model is described as a form of multidimensional scaling. The technique Is applied in order to establish which factors are associated with an Individual's preference for preservation of the teeth. 相似文献
13.
This article deals with a Bayesian predictive approach for two-stage sequential analyses in clinical trials, applied to both frequentist and Bayesian tests. We propose to make a predictive inference based on the notion of satisfaction index and the data accrued so far together with future data. The computations and the simulation results concern an inferential problem, related to the binomial model. 相似文献
14.
This paper presents practical approaches to the problem of sample size re-estimation in the case of clinical trials with survival data when proportional hazards can be assumed. When data are readily available at the time of the review, on a full range of survival experiences across the recruited patients, it is shown that, as expected, performing a blinded re-estimation procedure is straightforward and can help to maintain the trial's pre-specified error rates. Two alternative methods for dealing with the situation where limited survival experiences are available at the time of the sample size review are then presented and compared. In this instance, extrapolation is required in order to undertake the sample size re-estimation. Worked examples, together with results from a simulation study are described. It is concluded that, as in the standard case, use of either extrapolation approach successfully protects the trial error rates. 相似文献
15.
An important evolution in the missing data arena has been the recognition of need for clarity in objectives. The objectives of primary focus in clinical trials can often be categorized as assessing efficacy or effectiveness. The present investigation illustrated a structured framework for choosing estimands and estimators when testing investigational drugs to treat the symptoms of chronic illnesses. Key issues were discussed and illustrated using a reanalysis of the confirmatory trials from a new drug application in depression. The primary analysis used a likelihood‐based approach to assess efficacy: mean change to the planned endpoint of the trial assuming patients stayed on drug. Secondarily, effectiveness was assessed using a multiple imputation approach. The imputation model—derived solely from the placebo group—was used to impute missing values for both the drug and placebo groups. Therefore, this so‐called placebo multiple imputation (a.k.a. controlled imputation) approach assumed patients had reduced benefit from the drug after discontinuing it. Results from the example data provided clear evidence of efficacy for the experimental drug and characterized its effectiveness. Data after discontinuation of study medication were not required for these analyses. Given the idiosyncratic nature of drug development, no estimand or approach is universally appropriate. However, the general practice of pairing efficacy and effectiveness estimands may often be useful in understanding the overall risks and benefits of a drug. Controlled imputation approaches, such as placebo multiple imputation, can be a flexible and transparent framework for formulating primary analyses of effectiveness estimands and sensitivity analyses for efficacy estimands. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
16.
A general family of dynamic treatment allocations is defined, and it is shown that the permuted block procedure (Zelen 1974) and Begg and Iglewicz method (1980) are extreme choices in this family. A compromise method is suggested. The framework of this general family allows the relationships between these methods to be examined. By means of a simulation study these three methods plus the complete randomization method are compared in terms of efficiency and balance. The compromise method is shown to have good overall properties. In addition, an illustrative example is given 相似文献
17.
Design considerations in clinical trials with cure rate survival data: A case study in oncology 下载免费PDF全文
Steven Sun Grace Liu Tianmeng Lyu Fubo Xue Tzu‐Min Yeh Sudhakar Rao 《Pharmaceutical statistics》2018,17(2):94-104
For clinical trials with time‐to‐event as the primary endpoint, the clinical cutoff is often event‐driven and the log‐rank test is the most commonly used statistical method for evaluating treatment effect. However, this method relies on the proportional hazards assumption in that it has the maximal power in this circumstance. In certain disease areas or populations, some patients can be curable and never experience the events despite a long follow‐up. The event accumulation may dry out after a certain period of follow‐up and the treatment effect could be reflected as the combination of improvement of cure rate and the delay of events for those uncurable patients. Study power depends on both cure rate improvement and hazard reduction. In this paper, we illustrate these practical issues using simulation studies and explore sample size recommendations, alternative ways for clinical cutoffs, and efficient testing methods with the highest study power possible. 相似文献
18.
With advancement of technologies such as genomic sequencing, predictive biomarkers have become a useful tool for the development of personalized medicine. Predictive biomarkers can be used to select subsets of patients, which are most likely to benefit from a treatment. A number of approaches for subgroup identification were proposed over the last years. Although overviews of subgroup identification methods are available, systematic comparisons of their performance in simulation studies are rare. Interaction trees (IT), model‐based recursive partitioning, subgroup identification based on differential effect, simultaneous threshold interaction modeling algorithm (STIMA), and adaptive refinement by directed peeling were proposed for subgroup identification. We compared these methods in a simulation study using a structured approach. In order to identify a target population for subsequent trials, a selection of the identified subgroups is needed. Therefore, we propose a subgroup criterion leading to a target subgroup consisting of the identified subgroups with an estimated treatment difference no less than a pre‐specified threshold. In our simulation study, we evaluated these methods by considering measures for binary classification, like sensitivity and specificity. In settings with large effects or huge sample sizes, most methods perform well. For more realistic settings in drug development involving data from a single trial only, however, none of the methods seems suitable for selecting a target population. Using the subgroup criterion as alternative to the proposed pruning procedures, STIMA and IT can improve their performance in some settings. The methods and the subgroup criterion are illustrated by an application in amyotrophic lateral sclerosis. 相似文献
19.
One characterization of group sequential methods uses alpha spending functions to allocate the false positive rate throughout a study. We consider and evaluate several such spending functions as well as the time points of the interim analyses at which they apply. In addition, we evaluate the double triangular test as an alternative procedure that allows for early termination of the trial not only due to efficacy differences between treatments, but also due to lack of such differences. We motivate and illustrate our work by reference to the analysis of survival data from a proposed oncology study. Such group sequential procedures with one or two interim analyses are only slightly less powerful than fixed sample trials, but provide for the strong possibility of early stopping. Therefore, in all situations where they can practically be applied, we recommend their routine use in clinical trials. The double triangular test provides a suitable alternative to the group sequential procedures in that they do not provide for early stopping with acceptance of the null hypothesis. Again, there is only a modest loss in power relative to fixed sample tests. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
20.
定量数据分析效应值研究综述 总被引:4,自引:2,他引:2
近20年来,国外对定量数据分析效应值的研究日趋丰富。总结这一阶段国内外效应值研究的成果,主要包括效应值研究意义、效应值分类、计算方法和解释标准、效应值报告与解释研究现状、国内效应值研究现状。在此基础上,指出效应值研究是有待进一步探讨的课题,并提出改善效应值研究现状的建议。 相似文献