首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a bivariate regression model for count data that allows for positive as well as negative correlation of the response variables. The covariance structure is based on the Sarmanov distribution and consists of a product of generalised Poisson marginals and a factor that depends on particular functions of the response variables. The closed form of the probability function is derived by means of the moment-generating function. The model is applied to a large real dataset on health care demand. Its performance is compared with alternative models presented in the literature. We find that our model is significantly better than or at least equivalent to the benchmark models. It gives insights into influences on the variance of the response variables.  相似文献   

2.
We discuss properties of the bivariate family of distributions introduced by Sarmanov (1966). It is shown that correlation coefficients of this family of distributions have wider range than those of the Farlie-Gumbel-Morgenstern distributins. Possible applications of this family of bivariate distributions as prior distributins in Bayesian inference are discussed. The density of the bivariate Sarmanov distributions with beta marginals can be expressed as a linear combination of products of independent beta densities. This pseudoconjugate property greatly reduces the complexity of posterior computations when this bivariate beta distribution is used as a prior. Multivariate extensions are derived.  相似文献   

3.
In order to improve the correlation of the traditional Sarmanov distribution, a ‘generalized’ version was introduced earlier by Bairamov et al. (2001). The extent of the improvement in correlation, however, was never investigated in the literature. In this note we compare the two Sarmanov models regarding their maximum correlation. Several examples are given. It is shown that unlike the traditional Sarmanov, the generalized one always has a correlation approaching one regardless of the marginals, as long as the marginals are of the same type. When they are not of the same type, however, the correlation has an upper bound strictly less than one. We find conditions under which the upper bound is attained. Finally, we investigate the rates of convergence to the maximum correlation for the generalized Sarmanov bivariate distributions.  相似文献   

4.
This paper discusses four alternative methods of forming bivariate distributions with compound Poisson marginals. Basic properties of each bivariate version are given. A new bivariate negative binomial distribution, and four bivariate versions of the Sichel distribution, are defined and their properties given.  相似文献   

5.
For many years there has been interest in families of bivariate distributions with the marginals as parameters. Questions of this kind arise if one is to build a stochastic model in a situation where one has some idea about the dependence structure and marginal distributions. In this article, among all bivariate distributions which satisfy the constraints imposed by the known marginals and/or dependence structure, one that has the maximum entropy is obtained by using iterative procedure, and its convergence is proved.  相似文献   

6.
Several types of multivariate extensions of the inverse Gaussian (IG) distribution and the reciprocal inverse Gaussian (RIG) distribution are proposed. Some of these types are obtained as random-additive-effect models by means of well-known convolution properties of the IG and RIG distributions, and they have one-dimensional IG or RIG marginals. They are used to define a flexible class of multivariate Poisson mixtures.  相似文献   

7.
Time series of counts occur in many fields of practice, with the Poisson distribution as a popular choice for the marginal process distribution. A great variety of serial dependence structures of stationary count processes can be modelled by the INARMA family. In this article, we propose a new approach to the INMA(q) family in general, including previously known results as special cases. In the particular case of Poisson marginals, we will derive new results concerning regression properties and the serial dependence structure of INAR(1) and INMA(q) models. Finally, we present explicit expressions for the distribution of jumps in such processes.  相似文献   

8.
In this paper we firstly develop a Sarmanov–Lee bivariate family of distributions with the beta and gamma as marginal distributions. We obtain the linear correlation coefficient showing that, although it is not a strong family of correlation, it can be greater than the value of this coefficient in the Farlie–Gumbel–Morgenstern family. We also determine other measures for this family: the coefficient of median concordance and the relative entropy, which are analyzed by comparison with the case of independence. Secondly, we consider the problem of premium calculation in a Poisson–Lindley and exponential collective risk model, where the Sarmanov–Lee family is used as a structure function. We determine the collective and Bayes premiums whose values are analyzed when independence and dependence between the risk profiles are considered, obtaining that notable variations in premiums values are obtained even when low levels of correlation are considered.  相似文献   

9.
In this paper, a special class of m-dimensional distribution functions which can be uniquely determined in terms of their 2-dimensional marginals is studied. The members of the class can be characterized as having truncation invariant dependence structure. The representation given in this paper provides a physical meaning to the multivariate Cook-Johnson distribution, and introduces a systematic way of generating higher dimensional distributions by using rich 2-dimensional distributions provided that the 2-dimensional marginals are compatible. A class of 3-dimensional multivariate normal distribution has been generated and bounds in terms of lower dimensional marginals are provided.  相似文献   

10.
The Farlie-Gumbel-Morgenstern (FGM) family has been investigated in detail for various continuous marginals such as Cauchy, normal, exponential, gamma, Weibull, lognormal and others. It has been a popular model for the bivariate distribution with mild dependence. However, bivariate FGMs with continuous marginals on a bounded support discussed in the literature are only those with uniform or power marginals. In this paper we study the bivariate FGM family with marginals given by the recently proposed two-sided power (TSP) distribution. Since this family of bounded continuous distributions is very flexible, the properties of the FGM family with TSP marginals could serve as an indication of the structure of the FGM distribution with arbitrary marginals defined on a compact set. A remarkable stability of the correlation between the marginals has been observed.  相似文献   

11.
B. Chandrasekar 《Statistics》2013,47(2):161-165
Assuming that the random vectors X 1 and X 2 have independent bivariate Poisson distributions, the conditional distribution of X 1 given X 1?+?X 2?=?n is obtained. The conditional distribution turns out to be a finite mixture of distributions involving univariate binomial distributions and the mixing proportions are based on a bivariate Poisson (BVP) distribution. The result is used to establish two properties of a bivariate Poisson stochastic process which are the bivariate extensions of the properties for a Poisson process given by Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, Academic Press, New York.  相似文献   

12.
In this study, we deal with the problem of overdispersion beyond extra zeros for a collection of counts that can be correlated. Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial distributions have been considered. First, we propose a multivariate count model in which all counts follow the same distribution and are correlated. Then we extend this model in a sense that correlated counts may follow different distributions. To accommodate correlation among counts, we have considered correlated random effects for each individual in the mean structure, thus inducing dependency among common observations to an individual. The method is applied to real data to investigate variation in food resources use in a species of marsupial in a locality of the Brazilian Cerrado biome.  相似文献   

13.
In this article, we use the bivariate Poisson distribution obtained by the trivariate reduction method and compound it with a geometric distribution to derive a bivariate Pólya-Aeppli distribution. We then discuss a number of properties of this distribution including the probability generating function, correlation structure, probability mass function, recursive relations, and conditional distributions. The generating function of the tail probabilities is also obtained. Moment estimation of the parameters is then discussed and illustrated with a numerical example.  相似文献   

14.
This paper discusses some stochastic models for dependence of observations which include angular ones. First, we provide a theorem which constructs four-dimensional distributions with specified bivariate marginals on certain manifolds such as two tori, cylinders or discs. Some properties of the submodel of the proposed models are investigated. The theorem is also applicable to the construction of a related Markov process, models for incomplete observations, and distributions with specified marginals on the disc. Second, two maximum entropy distributions on the cylinder are discussed. The circular marginal of each model is distributed as the generalized von Mises distribution which represents a symmetric or asymmetric, unimodal or bimodal shape. The proposed cylindrical model is applied to two data sets.  相似文献   

15.
Recently, Gupta and Gupta [Analyzing skewed data by power-normal model, Test 17 (2008), pp. 197–210] proposed the power-normal distribution for which normal distribution is a special case. The power-normal distribution is a skewed distribution, whose support is the whole real line. Our main aim of this paper is to consider bivariate power-normal distribution, whose marginals are power-normal distributions. We obtain the proposed bivariate power-normal distribution from Clayton copula, and by making a suitable transformation in both the marginals. Lindley–Singpurwalla distribution also can be used to obtain the same distribution. Different properties of this new distribution have been investigated in detail. Two different estimators are proposed. One data analysis has been performed for illustrative purposes. Finally, we propose some generalizations to multivariate case also along the same line and discuss some of its properties.  相似文献   

16.
In this paper, we introduce a bivariate Kumaraswamy (BVK) distribution whose marginals are Kumaraswamy distributions. The cumulative distribution function of this bivariate model has absolutely continuous and singular parts. Representations for the cumulative and density functions are presented and properties such as marginal and conditional distributions, product moments and conditional moments are obtained. We show that the BVK model can be obtained from the Marshall and Olkin survival copula and obtain a tail dependence measure. The estimation of the parameters by maximum likelihood is discussed and the Fisher information matrix is determined. We propose an EM algorithm to estimate the parameters. Some simulations are presented to verify the performance of the direct maximum-likelihood estimation and the proposed EM algorithm. We also present a method to generate bivariate distributions from our proposed BVK distribution. Furthermore, we introduce a BVK distribution which has only an absolutely continuous part and discuss some of its properties. Finally, a real data set is analysed for illustrative purposes.  相似文献   

17.
In this paper, we introduce a new multivariate pareto (MVP) distribution with many interesting properties. we extend the results of characterization of univariate and bivariate pareto distributions given by Krishnaji (1970) and veenus and Nair (1994) respectively. We also extend the property of dullness of univariate pareto distribution given by Talwalkar (1980) to the multivariate pareto case. We obtain the maximum likelihood estimate (MLE) of the parameters and their asymptotic multivariate normal (AMVN) distrioutions. We propose large sample studentized test for testing independence and identical marginals of the components.  相似文献   

18.
In this paper, we introduce a new class of bivariate distributions whose marginals are beta-generated distributions. Copulas are employed to construct this bivariate extension of the beta-generated distributions. It is shown that when Archimedean copulas and convex beta generators are used in generating bivariate distributions, the copulas of the resulting distributions also belong to the Archimedean family. The dependence of the proposed bivariate distributions is examined. Simulation results for beta generators and an application to financial risk management are presented.  相似文献   

19.
20.
Dependent multivariate count data occur in several research studies. These data can be modelled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula-based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号