首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concern about the degree of uncertainty and potential conservatism in deterministic point estimates of risk has prompted researchers to turn increasingly to probabilistic methods for risk assessment. With Monte Carlo simulation techniques, distributions of risk reflecting uncertainty and/or variability are generated as an alternative. In this paper the compounding of conservatism(1) between the level associated with point estimate inputs selected from probability distributions and the level associated with the deterministic value of risk calculated using these inputs is explored. Two measures of compounded conservatism are compared and contrasted. The first measure considered, F , is defined as the ratio of the risk value, R d, calculated deterministically as a function of n inputs each at the j th percentile of its probability distribution, and the risk value, R j that falls at the j th percentile of the simulated risk distribution (i.e., F=Rd/Rj). The percentile of the simulated risk distribution which corresponds to the deterministic value, Rd , serves as a second measure of compounded conservatism. Analytical results for simple products of lognormal distributions are presented. In addition, a numerical treatment of several complex cases is presented using five simulation analyses from the literature to illustrate. Overall, there are cases in which conservatism compounds dramatically for deterministic point estimates of risk constructed from upper percentiles of input parameters, as well as those for which the effect is less notable. The analytical and numerical techniques discussed are intended to help analysts explore the factors that influence the magnitude of compounding conservatism in specific cases.  相似文献   

2.
Developmental anomalies resulting from prenatal toxicity can be manifested in terms of both malformations among surviving offspring and prenatal death. Although these two endpoints have traditionally been analyzed separately in the assessment of risk, multivariate methods of risk characterization have recently been proposed. We examined this and other issues in developmental toxicity risk assessment by evaluating the accuracy and precision of estimates of the effective dose ( ED 05) and the benchmark dose ( BMD 05) using computer simulation. Our results indicated that different variance structures (Dirichlet-trinomial and generalized linear model) used to characterize overdispersion yielded comparable results when fitting joint dose response models based on generalized estimating equations. (The choice of variance structure in separate modeling was also not critical.) However, using the Rao-Scott transformation to eliminate overdispersion tended to produce estimates of the ED 05 with reduced bias and mean squared error. Because joint modeling ensures that the ED 05 for overall toxicity (based on both malformations and prenatal death) is always less than the ED 05 for either malformations or prenatal death, joint modeling is preferred to separate modeling for risk assessment purposes.  相似文献   

3.
4.
Due to the hydrophobic nature of synthetic based fluids (SBFs), drilling cuttings are not very dispersive in the water column and settle down close to the disposal site. Arsenic and copper are two important toxic heavy metals, among others, found in the drilling waste. In this article, the concentrations of heavy metals are determined using a steady state "aquivalence-based" fate model in a probabilistic mode. Monte Carlo simulations are employed to determine pore water concentrations. A hypothetical case study is used to determine the water quality impacts for two discharge options: 4% and 10% attached SBFs, which correspond to the best available technology option and the current discharge practice in the U.S. offshore. The exposure concentration ( CE ) is a predicted environmental concentration, which is adjusted for exposure probability and bioavailable fraction of heavy metals. The response of the ecosystem  ( RE )  is defined by developing an empirical distribution function of predicted no-effect concentration. The pollutants' pore water concentrations within the radius of 750 m are estimated and cumulative distributions of risk quotient  ( RQ = CE / RE )  are developed to determine the probability of RQ greater than 1.  相似文献   

5.
There has been considerable discussion regarding the conservativeness of low-dose cancer risk estimates based upon linear extrapolation from upper confidence limits. Various groups have expressed a need for best (point) estimates of cancer risk in order to improve risk/benefit decisions. Point estimates of carcinogenic potency obtained from maximum likelihood estimates of low-dose slope may be highly unstable, being sensitive both to the choice of the dose–response model and possibly to minimal perturbations of the data. For carcinogens that augment background carcinogenic processes and/or for mutagenic carcinogens, at low doses the tumor incidence versus target tissue dose is expected to be linear. Pharmacokinetic data may be needed to identify and adjust for exposure-dose nonlinearities. Based on the assumption that the dose response is linear over low doses, a stable point estimate for low-dose cancer risk is proposed. Since various models give similar estimates of risk down to levels of 1%, a stable estimate of the low-dose cancer slope is provided by ŝ = 0.01/ED01, where ED01 is the dose corresponding to an excess cancer risk of 1%. Thus, low-dose estimates of cancer risk are obtained by, risk = ŝ × dose. The proposed procedure is similar to one which has been utilized in the past by the Center for Food Safety and Applied Nutrition, Food and Drug Administration. The upper confidence limit, s , corresponding to this point estimate of low-dose slope is similar to the upper limit, q 1 obtained from the generalized multistage model. The advantage of the proposed procedure is that ŝ provides stable estimates of low-dose carcinogenic potency, which are not unduly influenced by small perturbations of the tumor incidence rates, unlike 1.  相似文献   

6.
Current practice in carcinogen bioassay calls for exposure of experimental animals at doses up to and including the maximum tolerated dose (MTD). Such studies have been used to compute measures of carcinogenic potency such as the TD50 as well as unit risk factors such as q 1 * for predicting low-dose risks. Recent studies have indicated that these measures of carcinogenic potency are highly correlated with the MTD. Carcinogenic potency has also been shown to be correlated with indicators of mutagenicity and toxicity. Correlation of the MTDs for rats and mice implies a corresponding correlation in TD50 values for these two species. The implications of these results for cancer risk assessment are examined in light of the large variation in potency among chemicals known to induce tumors in rodents.  相似文献   

7.
Human H5N1 highly pathogenic avian influenza (HPAI) infection is associated with intimate exposure to live poultry. Perceptions of risk can modify behaviors, influencing actual exposure. However, greater hazard is not necessarily followed by perception of greater risk and more precautionary behavior because self-serving cognitive biases modulate precautionary and hazardous behaviors. We examined risk perception associated with avian influenza. A total of 1,550 face-to-face within-household interviews and 1,760 telephone interviews were derived to study avian influenza risk perception and live poultry use in Guangzhou and Hong Kong, respectively. Chi-square and Mann-Whitney tests assessed bivariate associations and risk distributions, respectively, and fully adjusted multivariate logistic models determined independent risk associations. Relative to Hong Kong, perceived "generalized" risk from buying live poultry (GZ, 58%, 95% confidence interval 55–60% vs. HK, 41%, 39–43%; χ2= 86.95, df  = 1, p < 0.001) and perceived self/family risk from buying ( z  =−2.092, p  = 0.036) were higher in Guangzhou. Higher perceived "generalized" risk was associated with not buying live poultry (OR = 0.65, 0.49–0.85), consistent with the pattern seen in Hong Kong, while perceived higher self/family risk was associated with buying ("likely/very likely/certain" OR = 1.74, 1.18–2.59); no such association was seen in Hong Kong. Multivariate adjustment indicated older age was associated with buying live poultry in Guangzhou (OR = 2.91, 1.36–6.25). Guangzhou respondents perceived greater risk relative to Hong Kong. Buying live poultry was associated with perceptions of less "generalized" risk but more self/family risk. Higher generalized risk was associated with fewer live poultry purchases, suggesting generalized risk may be a useful indicator of precautionary HPAI risk behavior.  相似文献   

8.
The recent decision of the U.S. Supreme Court on the regulation of CO2 emissions from new motor vehicles( 1 ) shows the need for a robust methodology to evaluate the fraction of attributable risk from such emissions. The methodology must enable decisionmakers to reach practically relevant conclusions on the basis of expert assessments the decisionmakers see as an expression of research in progress, rather than as knowledge consolidated beyond any reasonable doubt.( 2,3,4 ) This article presents such a methodology and demonstrates its use for the Alpine heat wave of 2003. In a Bayesian setting, different expert assessments on temperature trends and volatility can be formalized as probability distributions, with initial weights (priors) attached to them. By Bayesian learning, these weights can be adjusted in the light of data. The fraction of heat wave risk attributable to anthropogenic climate change can then be computed from the posterior distribution. We show that very different priors consistently lead to the result that anthropogenic climate change has contributed more than 90% to the probability of the Alpine summer heat wave in 2003. The present method can be extended to a wide range of applications where conclusions must be drawn from divergent assessments under uncertainty.  相似文献   

9.
Lifetime cancer potency of alfatoxin was assessed based on the Yeh et al. study from China in which both aflatoxin exposure and hepatitis B prevalence were measured. This study provides the best available information for estimating the carcinogenic risk posed by aflatoxin to the U.S. population. Cancer potency of aflatoxin was estimated using a biologically motivated risk assessment model. The best estimate of aflatoxin potency was 9 (mg/kg/day)−1 for individuals negative for hepatitis B and 230 (mg/kg/day)−1 for individuals positive for hepatitis B.  相似文献   

10.
The total ban on use of meat and bone meal (MBM) in livestock feed has been very successful in reducing bovine spongiform encephalopathy (BSE) spread, but also implies a waste of high-quality proteins resulting in economic and ecological loss. Now that the BSE epidemic is fading out, a partial lifting of the MBM ban might be considered. The objective of this study was to assess the BSE risk for the Netherlands if MBM derived from animals fit for human consumption, i.e., category 3 MBM, would be used in nonruminant feed. A stochastic simulation model was constructed that calculates (1) the probability that infectivity of undetected BSE-infected cows ends up with calves and (2) the quantity of infectivity ( Qinf ) consumed by calves in case of such an incident. Three pathways were considered via which infectivity can reach cattle: (1) cross-contamination in the feed mill, (2) cross-contamination on the primary farm, and (3) pasture contamination. Model calculations indicate that the overall probability that infectivity ends up with calves is 3.2%. In most such incidents the Qinf is extremely small (median = 6.5 × 10−12 ID50; mean = 1.8 × 10−4 ID50), corresponding to an average probability of 1.3 × 10−4 that an incident results in ≥1 new BSE infections. Cross-contamination in the feed mill is the most risky pathway. Combining model results with Dutch BSE prevalence estimates for the coming years, it can be concluded that the BSE risk of using category 3 MBM derived from Dutch cattle in nonruminant feed is very low.  相似文献   

11.
This study tries to assess the risk of deaths and injuries from motor vehicle accidents associated with an evacuation of population groups in case of nuclear plant accidents. The risk per person–km is evaluated using: (a) data from previous evacuation: information from Soufriere evacuation (Guadeloupe Island 1976) and Mississauga (1979), added to Hans and Sell's data: no road accident occurred for a sample of 1,500,000 persons; (b) national recording system for motor vehicle accident: the rates of 2.2 10 -8 deaths per person–km and 32 10-8 injuries per person–km is calculated as an average. These last rates in France overestimate the number of casualties. A reasonable hypothesis is to assume that the probability of road accident occurrence follows a Poisson distribution, as these events are independent and unfrequent, as no accident was observed in a sample of 1,500,000 persons the probability is between 0 and an upper value of 0.24 10-8 deaths per person-km and 3.29 10-8 injuries per person–km. The average and maximum population involved within different radii around French and U.S. Nuclear power sites are taken as a sample size in order to study the total risk of deaths and injuries in the hypothesis of an evacuation being necessary to protect the populations.  相似文献   

12.
There is a need for plant-specific distributions of incidence and failure rates rather than distributions from pooled data which are based on the "common incidence rate" assumption. The so-called superpopulation model satisfies this need through a practically appealing approach that accounts for the variability over the population of plants. Unfortunately, the chosen order in which the integrals with respect to the individual plant rates λi, ( i = 0, 1…, m ) and the parameters a , β of the Γ-population distribution are solved seems to drive the solution close to the common incidence rate distribution. It is shown that the solution obtained from interchanging the order and solving the integrals with respect to the individual plant rates by Monte Carlo simulation very quickly provides the plant specific distribution. This differing solution behaviour may be due to the lack of uniform convergence over (α, β, λI, ( i = 1,…, m ))-space. Examples illustrate the difference that may be observed.  相似文献   

13.
Calculation of Benchmark Doses from Continuous Data   总被引:20,自引:0,他引:20  
A benchmark dose (BMD) is the dose of a substance that corresponds to a prescribed increase in the response (called the benchmark response or BMR) of a health effect. A statistical lower bound on the benchmark dose (BMDL) has been proposed as a replacement for the no-observed-adverse-effect-level (NOAEL) in setting acceptable human exposure levels. A method is developed in this paper for calculating BMDs and BMDLs from continuous data in a manner that is consistent with those calculated from quantal data. The method involves defining an abnormal response, either directly by specifying a cutoff x0 that separates continuous responses into normal and abnormal categories, or indirectly by specifying the proportion P0 of abnormal responses expected among unexposed subjects. The method does not involve actually dichotomizing individual continuous responses into quantal responses, and in certain cases can be applied to continuous data in summarized form (e.g., means and standard deviations of continuous responses among subjects in discrete dose groups). In addition to specifying the BMR and either x0 or P0 , the method requires specification of the distribution of continuous responses, including specification of the dose-response θ(d) for a measure of central tendency. A method is illustrated for selecting θ(d) to make the probability of an abnormal response any desired dose-response function. This enables the same dose-response model (Weibull, log-logistic, etc.) to be used for the probability of an abnormal response, regardless of whether the underlying data are continuous or quantal. Whenever the continuous responses are normally distributed with standard deviation σ (independent of dose), the method is equivalent to defining the BMD as the dose corresponding to a prescribed change in the mean response relative to σ.  相似文献   

14.
A central part of probabilistic public health risk assessment is the selection of probability distributions for the uncertain input variables. In this paper, we apply the first-order reliability method (FORM)(1–3) as a probabilistic tool to assess the effect of probability distributions of the input random variables on the probability that risk exceeds a threshold level (termed the probability of failure) and on the relevant probabilistic sensitivities. The analysis was applied to a case study given by Thompson et al. (4) on cancer risk caused by the ingestion of benzene contaminated soil. Normal, lognormal, and uniform distributions were used in the analysis. The results show that the selection of a probability distribution function for the uncertain variables in this case study had a moderate impact on the probability that values would fall above a given threshold risk when the threshold risk is at the 50th percentile of the original distribution given by Thompson et al. (4) The impact was much greater when the threshold risk level was at the 95th percentile. The impact on uncertainty sensitivity, however, showed a reversed trend, where the impact was more appreciable for the 50th percentile of the original distribution of risk given by Thompson et al. 4 than for the 95th percentile. Nevertheless, the choice of distribution shape did not alter the order of probabilistic sensitivity of the basic uncertain variables.  相似文献   

15.
A quantitative microbial risk assessment (QMRA) according to the Codex Alimentarius Principles is conducted to evaluate the risk of human salmonellosis through household consumption of fresh minced pork meat in Belgium. The quantitative exposure assessment is carried out by building a modular risk model, called the METZOON-model, which covers the pork production from farm to fork. In the METZOON-model, the food production pathway is split up in six consecutive modules: (1) primary production, (2) transport and lairage, (3) slaughterhouse, (4) postprocessing, (5) distribution and storage, and (6) preparation and consumption. All the modules are developed to resemble as closely as possible the Belgian situation, making use of the available national data. Several statistical refinements and improved modeling techniques are proposed. The model produces highly realistic results. The baseline predicted number of annual salmonellosis cases is 20,513 ( SD 9061.45). The risk is estimated higher for the susceptible population (estimate  4.713 × 10−5; SD 1.466 × 10−5  ) compared to the normal population  (estimate 7.704 × 10−6; SD 5.414 × 10−6)  and is mainly due to undercooking and to a smaller extent to cross-contamination in the kitchen via cook's hands.  相似文献   

16.
Quantitative microbial risk assessment was used to predict the likelihood and spatial organization of Mycobacterium tuberculosis ( Mtb ) transmission in a commercial aircraft. Passenger exposure was predicted via a multizone Markov model in four scenarios: seated or moving infectious passengers and with or without filtration of recirculated cabin air. The traditional exponential ( k  = 1) and a new exponential ( k  = 0.0218) dose-response function were used to compute infection risk. Emission variability was included by Monte Carlo simulation. Infection risks were higher nearer and aft of the source; steady state airborne concentration levels were not attained. Expected incidence was low to moderate, with the central 95% ranging from 10−6 to 10−1 per 169 passengers in the four scenarios. Emission rates used were low compared to measurements from active TB patients in wards, thus a "superspreader" emitting 44 quanta/h could produce 6.2 cases or more under these scenarios. Use of respiratory protection by the infectious source and/or susceptible passengers reduced infection incidence up to one order of magnitude.  相似文献   

17.
The objective of this article is to characterize the risk of infection from airborne Mycobacterium tuberculosis bacilli exposure in commercial passenger trains based on a risk‐based probabilistic transmission modeling. We investigated the tuberculosis (TB) infection risks among commercial passengers by inhaled aerosol M. tuberculosis bacilli and quantify the patterns of TB transmission in Taiwan High Speed Rail (THSR). A deterministic Wells‐Riley mathematical model was used to account for the probability of infection risk from M. tuberculosis bacilli by linking the cough‐generated aerosol M. tuberculosis bacilli concentration and particle size distribution. We found that (i) the quantum generation rate of TB was estimated with a lognormal distribution of geometric mean (GM) of 54.29 and geometric standard deviation (GSD) of 3.05 quantum/h at particle size ≤ 5 μm and (ii) the basic reproduction numbers (R0) were estimated to be 0.69 (0.06–6.79), 2.82 (0.32–20.97), and 2.31 (0.25–17.69) for business, standard, and nonreserved cabins, respectively. The results indicate that commercial passengers taking standard and nonreserved cabins had higher transmission risk than those in business cabins based on conservatism. Our results also reveal that even a brief exposure, as in the bronchoscopy cases, can also result in a transmission when the quantum generation rate is high. This study could contribute to a better understanding of the dynamics of TB transmission in commercial passenger trains by assessing the relationship between TB infectiousness, passenger mobility, and key model parameters such as seat occupancy, ventilation rate, and exposure duration.  相似文献   

18.
Safety criteria for frequency of nuclear-reactor accidents and for reactor-induced risk to individuals and to society are evaluated on the basis of their comprehensiveness, clarity, recognition of uncertainty, practicability, defensibility, simplicity, and internal consistency. Many criteria were found to be comprehensive and practicable; few completely satisfied the other evaluation standards. A consensus inferred from the most favorably evaluated criteria would allow between 1.0time10-4 and 1.0time10-3 core melts per reactor year, between 1.0time10-6 and 2.0time10-5 fatalities per reactor year per individual, and a total exposure in the United States of between 1000 and 10,000 person rems per reactor year. This consensus is consistent with the criteria proposed in NUREG0880.  相似文献   

19.
Listeria monocytogenes is a leading cause of hospitalization, fetal loss, and death due to foodborne illnesses in the United States. A quantitative assessment of the relative risk of listeriosis associated with the consumption of 23 selected categories of ready‐to‐eat foods, published by the U.S. Department of Health and Human Services and the U.S. Department of Agriculture in 2003, has been instrumental in identifying the food products and practices that pose the greatest listeriosis risk and has guided the evaluation of potential intervention strategies. Dose‐response models, which quantify the relationship between an exposure dose and the probability of adverse health outcomes, were essential components of the risk assessment. However, because of data gaps and limitations in the available data and modeling approaches, considerable uncertainty existed. Since publication of the risk assessment, new data have become available for modeling L. monocytogenes dose‐response. At the same time, recent advances in the understanding of L. monocytogenes pathophysiology and strain diversity have warranted a critical reevaluation of the published dose‐response models. To discuss strategies for modeling L. monocytogenes dose‐response, the Interagency Risk Assessment Consortium (IRAC) and the Joint Institute for Food Safety and Applied Nutrition (JIFSAN) held a scientific workshop in 2011 (details available at http://foodrisk.org/irac/events/ ). The main findings of the workshop and the most current and relevant data identified during the workshop are summarized and presented in the context of L. monocytogenes dose‐response. This article also discusses new insights on dose‐response modeling for L. monocytogenes and research opportunities to meet future needs.  相似文献   

20.
A Monte Carlo simulation is incorporated into a risk assessment for trichloroethylene (TCE) using physiologically-based pharmacokinetic (PBPK) modeling coupled with the linearized multistage model to derive human carcinogenic risk extrapolations. The Monte Carlo technique incorporates physiological parameter variability to produce a statistically derived range of risk estimates which quantifies specific uncertainties associated with PBPK risk assessment approaches. Both inhalation and ingestion exposure routes are addressed. Simulated exposure scenarios were consistent with those used by the Environmental Protection Agency (EPA) in their TCE risk assessment. Mean values of physiological parameters were gathered from the literature for both mice (carcinogenic bioassay subjects) and for humans. Realistic physiological value distributions were assumed using existing data on variability. Mouse cancer bioassay data were correlated to total TCE metabolized and area-under-the-curve (blood concentration) trichloroacetic acid (TCA) as determined by a mouse PBPK model. These internal dose metrics were used in a linearized multistage model analysis to determine dose metric values corresponding to 10-6 lifetime excess cancer risk. Using a human PBPK model, these metabolized doses were then extrapolated to equivalent human exposures (inhalation and ingestion). The Monte Carlo iterations with varying mouse and human physiological parameters produced a range of human exposure concentrations producing a 10-6 risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号