首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
小域估计问题是抽样调查的热点问题之一,其主流发展方向是基于模型的估计方法。但是,这种方法依赖于模型的假定,若调查数据满足模型的假定条件,估计的效果会非常好;反之,无法得到有效的估计量。文章利用Box—Cox变换和抽样设计权数得到小域的双重稳健估计量;并通过模拟例子,说明这种方法是一种双重稳健的小域方法。  相似文献   

2.
大型的抽样调查不仅是多目标的复杂调查,而且在估计总体目标变量的基础上还需要对其中的一些域的目标变量进行估计,所以小域估计和多目标估计问题一直是抽样调查的热点问题.文章主要利用模型校准权数的方法,解决小域中的多目标估计问题,并得到小域的多个目标变量的稳健估计量.  相似文献   

3.
文章介绍了一种基于EBLUP的模型权数的小域估计方法.这种估计方法一方面使小域的目标估计量是加权线性组合,从而使估计过程以及均方误的估计更加简单;另一方面得到的估计量不依赖于模型的假定,是一种稳健的估计量.文章还通过一个简单的模拟案例说明了这种估计量的稳健的性质,说明这种估计方法是一种非常符合实际调查情况的小域估计方法.  相似文献   

4.
吕萍 《统计教育》2009,(1):56-59,64
小域估计问题日益受到社会各界的关注,它通常利用辅助信息和统计模型提高估计的精度。其中最常用的小域模型是混合模型,即利用域随机效应来解释域间变化,但是这种模型要求严格的假定条件,不易于处理实际中存在异常值或重尾现象的小域估计问题。本文将分位数回归模型引入小域估计中,这个模型不需要强的假定条件,可以处理实际中存在异常值或是重尾现象的小域估计问题,并通过一个模拟案例进一步说明了基于分位数回归模型的小域估计方法可以得到更加稳健的估计量.挖掘更多的信息来提高小域估计的精度,是一种比较好的小域估计方法。  相似文献   

5.
吕萍 《统计教育》2008,(10):16-19
小域估计成为当今抽样调查的热点问题之一,日益受到社会各界的关注。小域估计多采用基于模型的估计方法,其中以线性混合模型最为普遍,这种模型通常假定域随机效应是独立的。但是,在实际各个域之间往往表现出一定的空间相关性,并且这种相关性随着距离的增加而减小,若忽视这种空间效应,估计的精度会大大的降低。本文运用域随机效应为空间相关的空间模型来解决空间数据下的小域估计问题,并用基于这种空间模型的权数的方法得到了目标变量的稳健估计量,很大程度上提高小域估计的精度,是一种比较好的小域估计方法。  相似文献   

6.
小域估计的理论和最新进展   总被引:2,自引:1,他引:2  
小域估计问题是当今抽样调查中的一个热点问题,由于小域样本量很小甚至为零,用传统的直接估计无法得到小域的精确估计,故借助于其他相邻与相似的小域的样本信息和历史信息的间接估计来提高估计的精度,是十分必要的.目前小域估计的主流发展方向是基于模型的小域估计方法,在介绍基于小域层次模型的小域估计方法和基于单元层次模型的小域估计方法的理论基础上,对实际调查中存在的一些小域估计问题以及针对这些实际问题的最近进展进行介绍,具有重要的理论和实践意义.  相似文献   

7.
在基于抽样调查数据对总体参数进行估计的方法中,小域估计方法能够借助于辅助信息对小样本乃至无样本区域的参数进行有效的估计,并被广泛应用于抽样估计领域。单元水平模型作为小域估计的基本模型之一,是处理单元级别数据估计的有力工具之一。在单元水平模型的应用条件中,需假定区域随机误差和模型随机误差均服从正态分布。然而,在抽样调查中,满足这一条件的调查数据是很少的,尤其是在观测数据中出现离群值时。不满足正态性假设条件下的小域估计量会产生较大的偏差和均方误,因此有必要研究针对正态性假设和离群观测值不敏感的稳健估计方法。通过引入γ散度和γ似然函数,构建了基于单元水平模型的小域稳健估计方法,得到了模型参数的稳健估计和小域目标变量的稳健估计。与现有的稳健估计方法相比,所提新方法能更好地处理区域随机误差和模型随机误差非正态的情形,对于目标变量存在离群观测的情形,具有更好的稳健性,估计均方误更小。在利用模拟数据进行验证中,比较了不同误差分布情形下几类常用估计方法得到的估计量的均方误差,并进一步探究了随着污染分布的方差和比率变化,所得估计量的均方误差变化情形。最后,通过应用于经典的小域估计数据,进一步验证了所提新...  相似文献   

8.
抽样调查领域中,为满足多层次的需求产生了域与小域估计的理论与方法.文章介绍域与小域估计的理论,并综述相关文献.  相似文献   

9.
周巍等 《统计研究》2015,32(7):81-86
遥感影像是大数据的一种,利用遥感对农作物播种面积进行估算常采用回归估计量或校准估计量,通常都需要将地面样本数据与遥感分类信息相结合。但对于大多数回归估计量,对省级总体的农作物面积估算只能满足对省级总体的精度要求而不能分解到更小区域,比如县和乡级。本文利用黑龙江省2011年的地面实测样本数据结合遥感分类结果,构建了单元层次的多响应变量的多元回归形式的小域模型,并将小域效应设定为固定形式。这样基于回归估计方法,既可以估算分县的主要作物播种面积,也可以使得各县播种面积估计结果相加就等于回归模型含义下的省级总体的总量估计。对黑龙江省玉米、水稻、大豆分县小域估计结果的精度评价(变异系数C.V),平均而言均可以满足县级精度要求。本文的结果表明小域估计方法在解决省级总体对全省和分县的农作物种植面积多级估算问题中具有很好的应用。  相似文献   

10.
放回抽样下HT估计量的性质及应用   总被引:1,自引:0,他引:1  
放回抽样下传统的估计方法是采用Hansen-Hurwitz估计。而放回抽样下HH估计量并不是一致最小方差无偏估计,本文提出了另一种估计方法,即采用Horvitz-Thompson估计,并论证了放回抽样下HT估计量的三条定理,及与HH估计量的比较。然后以放回简单随机抽样和PPS抽样为例,通过理论公式、计算机模拟以及具体案例,进行更具体的分析。说明在一定条件下,HT估计量相对更优。在实际应用中,本文也提出了通过比较方差估计作为选取估计量的准则。  相似文献   

11.
Predictive influence of explanatory variables has been studied in both univariate and multivariate distributions. In the Bayesian approach, the same problem is considered in absence of multicollinearity in the dataset. The aim of this article is to study the same in the presence of perfect multicollinearity. To do this, we first derived the predictive distributions for full model and reduced model using vague prior density. Then the discrepancies between these predictive distributions are measured by the Kullback–Leibler (K–L) directed measure of divergence to assess the influence of deleted explanatory variables. Finally, distribution of the discrepancies is derived and the test procedure is performed.  相似文献   

12.
For small area estimation of area‐level data, the Fay–Herriot model is extensively used as a model‐based method. In the Fay–Herriot model, it is conventionally assumed that the sampling variances are known, whereas estimators of sampling variances are used in practice. Thus, the settings of knowing sampling variances are unrealistic, and several methods are proposed to overcome this problem. In this paper, we assume the situation where the direct estimators of the sampling variances are available as well as the sample means. Using this information, we propose a Bayesian yet objective method producing shrinkage estimation of both means and variances in the Fay–Herriot model. We consider the hierarchical structure for the sampling variances, and we set uniform prior on model parameters to keep objectivity of the proposed model. For validity of the posterior inference, we show under mild conditions that the posterior distribution is proper and has finite variances. We investigate the numerical performance through simulation and empirical studies.  相似文献   

13.
In this paper, we study the robust estimation for the order of hidden Markov model (HMM) based on a penalized minimum density power divergence estimator, which is obtained by utilizing the finite mixture marginal distribution of HMM. For this task, we adopt the locally conic parametrization method used in [D. Dacunha-Castelle and E. Gassiate, Testing in locally conic models and application to mixture models. ESAIM Probab. Stat. (1997), pp. 285–317; D. Dacunha-Castelle and E. Gassiate, Testing the order of a model using locally conic parametrization: population mixtures and stationary arma processes, Ann. Statist. 27 (1999), pp. 1178–1209; T. Lee and S. Lee, Robust and consistent estimation of the order of finite mixture models based on the minimizing a density power divergence estimator, Metrika 68 (2008), pp. 365–390] to avoid the difficulties that arise in handling mixture marginal models, such as the non-identifiability of the parameter space and the singularity problem with the asymptotic variance. We verify that the estimated order is consistent and simulation results are provided for illustration.  相似文献   

14.
This paper is concerned with the estimation of a shift parameter δo, based on some nonnegative functional Hg1 of the pair (DδN(x), f?δN(x)), where DδN(x) = KN/b {F2,n(x)—F1,m (x + δ)}, +δN(x) = {mF1,m (x + δ) + nF2,n(x)}/N, where F1,m and F2,n are the empirical distribution functions of two independent random samples (N = m + n), and where K2N = mn/N. First an estimator δN, is defined as a value of δ minimizing a functional H of the type of H1. A second estimator δ1N is also defined which is a linearized version of the first. Finite and asymptotic properties of these estimators are considered. It is also shown that most well-known test statistics of the Kolmogorov-Smirnov type are particular cases of such functionals H1. The asymptotic distribution and the asymptotic efficiency of some estimators are given.  相似文献   

15.
Two classes of estimators of a location parameter ø0 are proposed, based on a nonnegative functional H1* of the pair (D1øN, GøN), where and where FN is the sample distribution function. The estimators of the first class are defined as a value of ø minimizing H1*; the estimators of the second class are linearized versions of those of the first. The asymptotic distribution of the estimators is derived, and it is shown that the Kolmogorov-Smirnov statistic, the signed linear rank statistics, and the Cramérvon Mises statistics are special cases of such functionals H1*;. These estimators are closely related to the estimators of a shift in the two-sample case, proposed and studied by Boulanger in B2 (pp. 271–284).  相似文献   

16.
This article compares eight estimators in terms of relative efficiencies with the univariate mean, some of which have not been compared previously. Four estimators, when testing hypotheses, are compared in terms of actual Type I errors. In terms of point estimation, the modified one-step M-estimator, one-step M-estimator, and rfch estimator are found to be the three best choices depending on the proportion of outliers. In terms of actual Type I errors, the modified one-step M estimator's and rfch estimator's level was between.045 and.055 in 5 out of 7 situations when real data were used in simulations.  相似文献   

17.
This work is devoted to robust principal component analysis (PCA). We give a comparison between some multivariate estimators of location and scatter by computing the influence functions of the sensitivity coefficient ρ corresponding to these estimators, and the mean squared error (MSE) of estimators of ρ. The coefficient ρ measures the closeness between the subspaces spanned by the initial eigenvectors and their corresponding version derived from an infinitesimal perturbation of the data distribution.  相似文献   

18.
In this article, we introduce a new two-parameter estimator by grafting the contraction estimator into the modified ridge estimator proposed by Swindel (1976 Swindel , B. F. ( 1976 ). Good ridge estimators based on prior information . Commun. Statist. Theor. Meth. A5 : 10651075 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]). This new two-parameter estimator is a general estimator which includes the ordinary least squares, the ridge, the Liu, and the contraction estimators as special cases. Furthermore, by setting restrictions Rβ = r on the parameter values we introduce a new restricted two-parameter estimator which includes the well-known restricted least squares, the restricted ridge proposed by Groß (2003 Groß , J. ( 2003 ). Restricted ridge estimation . Statist. Probab. Lett. 65 : 5764 .[Crossref], [Web of Science ®] [Google Scholar]), the restricted contraction estimators, and a new restricted Liu estimator which we call the modified restricted Liu estimator different from the restricted Liu estimator proposed by Kaç?ranlar et al. (1999 Kaç?ranlar , S. , Sakall?o?lu , S. , Akdeniz , F. , Styan , G. P. H. , Werner , H. J. ( 1999 ). A new biased estimator in linear regression and a detailed analysis of the widely-analysed dataset on Portland cement . Sankhya Ser. B., Ind. J. Statist. 61 : 443459 . [Google Scholar]). We also obtain necessary and sufficient condition for the superiority of the new two-parameter estimator over the ordinary least squares estimator and the comparison of the new restricted two-parameter estimator to the new two-parameter estimator is done by the criterion of matrix mean square error. The estimators of the biasing parameters are given and a simulation study is done for the comparison as well as the determination of the biasing parameters.  相似文献   

19.
Sakall?oglu et al. (2001 Sakall?oglu , Kaç?ranlar , Akdeniz ( 2001 ). Mean squared error comparisons of some biased estimators . Commun. Statist. Theor. Meth. 30 : 347361 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) dealt with the comparisons among the ridge estimator, Liu estimator, and iteration estimator. Akdeniz and Erol (2003 Akdeniz , F. , Erol , H. ( 2003 ). Mean squared error matrix comparisons of some biased estimators in linear regression . Commun. Statist. Theor. Meth. 32 : 23892413 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) have compared the (almost unbiased) generalized ridge regression estimator with the (almost unbiased) generalized Liu estimator in the matrix mean squared error sense. In this article, we study the ridge estimator and Liu estimator with respect to linear equality restriction, and establish some sufficient conditions for the superiority of the restricted ridge estimator over the restricted Liu estimator and the superiority of the restricted Liu estimator over the restricted ridge estimator under mean squared error matrix, respectively. Furthermore, we give a numerical example.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号