共查询到2条相似文献,搜索用时 0 毫秒
1.
Two procedures are considered for estimating the concentration parameters of the Fisher matrix distribution for rotations or orientations in three dimensions. The first is maximum likelihood. The use of a convenient 1-dimensional integral representation of the normalising constant, which greatly simplifies the computation, is suggested. The second approach exploits the equivalence of the Fisher distribution for rotations in three dimensions, and the Bingham distribution for axes in four dimensions. We describe a pseudo likelihood procedure which works for the Bingham distribution in any dimension. This alternative approach does not require numerical integration. Results on the asymptotic efficiency of the pseudo likelihood estimator relative to the maximum likelihood estimator are given, and the two estimators are compared in the analysis of a well-known vectorcardiography dataset. 相似文献
2.
Nikos Tzavidis Stefano Marchetti Ray Chambers 《Australian & New Zealand Journal of Statistics》2010,52(2):167-186
Small‐area estimation techniques have typically relied on plug‐in estimation based on models containing random area effects. More recently, regression M‐quantiles have been suggested for this purpose, thus avoiding conventional Gaussian assumptions, as well as problems associated with the specification of random effects. However, the plug‐in M‐quantile estimator for the small‐area mean can be shown to be the expected value of this mean with respect to a generally biased estimator of the small‐area cumulative distribution function of the characteristic of interest. To correct this problem, we propose a general framework for robust small‐area estimation, based on representing a small‐area estimator as a functional of a predictor of this small‐area cumulative distribution function. Key advantages of this framework are that it naturally leads to integrated estimation of small‐area means and quantiles and is not restricted to M‐quantile models. We also discuss mean squared error estimation for the resulting estimators, and demonstrate the advantages of our approach through model‐based and design‐based simulations, with the latter using economic data collected in an Australian farm survey. 相似文献