首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of simultaneous estimation of normal means is considered when variances are unequal and the loss is sum of squared errors. Minimaxity or non-minimaxity of empirical Bayes estimators is investigated when the common prior distribution is given by normal one with mean 0. Minimaxity results for the case when the loss is a weighted sum of squared errors is also given. Monte Carlo simulation results are given to compare the risk behavior of the empirical Bayes estimator with those of other minimax ones.  相似文献   

2.
In the analysis of survival times, the logrank test and the Cox model have been established as key tools, which do not require specific distributional assumptions. Under the assumption of proportional hazards, they are efficient and their results can be interpreted unambiguously. However, delayed treatment effects, disease progression, treatment switchers or the presence of subgroups with differential treatment effects may challenge the assumption of proportional hazards. In practice, weighted logrank tests emphasizing either early, intermediate or late event times via an appropriate weighting function may be used to accommodate for an expected pattern of non-proportionality. We model these sources of non-proportional hazards via a mixture of survival functions with piecewise constant hazard. The model is then applied to study the power of unweighted and weighted log-rank tests, as well as maximum tests allowing different time dependent weights. Simulation results suggest a robust performance of maximum tests across different scenarios, with little loss in power compared to the most powerful among the considered weighting schemes and huge power gain compared to unfavorable weights. The actual sources of non-proportional hazards are not obvious from resulting populationwise survival functions, highlighting the importance of detailed simulations in the planning phase of a trial when assuming non-proportional hazards.We provide the required tools in a software package, allowing to model data generating processes under complex non-proportional hazard scenarios, to simulate data from these models and to perform the weighted logrank tests.  相似文献   

3.
Hierarchical models are widely used in medical research to structure complicated models and produce statistical inferences. In a hierarchical model, observations are sampled conditional on some parameters and these parameters are sampled from a common prior distribution. Bayes and empirical Bayes (EB) methods have been effectively applied in analyzing these models. Despite many successes, parametric Bayes and EB methods may be sensitive to misspecification of prior distributions. In this paper, without specific restriction on the form of the prior distribution, we propose a nonparametric EB method to estimate the treatment effect of each group and develop a testing procedure to compare between-group differences. Simulation studies demonstrate that the proposed EB method was more efficient than some standard procedures. An illustrative example is provided with data from a clinical trial evaluating a new treatment for patients with stress urinary incontinence.  相似文献   

4.
Empirical Bayes is a versatile approach to “learn from a lot” in two ways: first, from a large number of variables and, second, from a potentially large amount of prior information, for example, stored in public repositories. We review applications of a variety of empirical Bayes methods to several well‐known model‐based prediction methods, including penalized regression, linear discriminant analysis, and Bayesian models with sparse or dense priors. We discuss “formal” empirical Bayes methods that maximize the marginal likelihood but also more informal approaches based on other data summaries. We contrast empirical Bayes to cross‐validation and full Bayes and discuss hybrid approaches. To study the relation between the quality of an empirical Bayes estimator and p, the number of variables, we consider a simple empirical Bayes estimator in a linear model setting. We argue that empirical Bayes is particularly useful when the prior contains multiple parameters, which model a priori information on variables termed “co‐data”. In particular, we present two novel examples that allow for co‐data: first, a Bayesian spike‐and‐slab setting that facilitates inclusion of multiple co‐data sources and types and, second, a hybrid empirical Bayes–full Bayes ridge regression approach for estimation of the posterior predictive interval.  相似文献   

5.
This paper addresses the problem of estimating a matrix of the normal means, where the variances are unknown but common. The approach to this problem is provided by a hierarchical Bayes modeling for which the first stage prior for the means is matrix-variate normal distribution with mean zero matrix and a covariance structure and the second stage prior for the covariance is similar to Jeffreys’ rule. The resulting hierarchical Bayes estimators relative to the quadratic loss function belong to a class of matricial shrinkage estimators. Certain conditions are obtained for admissibility and minimaxity of the hierarchical Bayes estimators.  相似文献   

6.
Empirical Bayes methods are used to estimate the extent of the undercount at the local level in the 1980 U.S. census. "Grouping of like subareas from areas such as states, counties, and so on into strata is a useful way of reducing the variance of undercount estimators. By modeling the subareas within a stratum to have a common mean and variances inversely proportional to their census counts, and by taking into account sampling of the areas (e.g., by dual-system estimation), empirical Bayes estimators that compromise between the (weighted) stratum average and the sample value can be constructed. The amount of compromise is shown to depend on the relative importance of stratum variance to sampling variance. These estimators are evaluated at the state level (51 states, including Washington, D.C.) and stratified on race/ethnicity (3 strata) using data from the 1980 postenumeration survey (PEP 3-8, for the noninstitutional population)."  相似文献   

7.
For a moderate or large number of regression coefficients, shrinkage estimates towards an overall mean are obtained by Bayes and empirical Bayes methods. For a special case, the Bayes and empirical Bayes shrinking weights are shown to be asymptotically equivalent as the amount of shrinkage goes to zero. Based on comparisons between Bayes and empirical Bayes solutions, a modification of the empirical Bayes shrinking weights designed to guard against unreasonable overshrinking is suggested. A numerical example is given.  相似文献   

8.
The author proposes to use weighted likelihood to approximate Bayesian inference when no external or prior information is available. He proposes a weighted likelihood estimator that minimizes the empirical Bayes risk under relative entropy loss. He discusses connections among the weighted likelihood, empirical Bayes and James‐Stein estimators. Both simulated and real data sets are used for illustration purposes.  相似文献   

9.
In this article, utilizing a scale mixture of skew-normal distribution in which mixing random variable is assumed to follow a mixture model with varying weights for each observation, we introduce a generalization of skew-normal linear regression model with the aim to provide resistant results. This model, which also includes the skew-slash distribution in a particular case, allows us to accommodate and detect outlying observations under the skew-normal linear regression model. Inferences about the model are carried out through the empirical Bayes approach. The conditions for propriety of the posterior and for existence of posterior moments are given under the standard noninformative priors for regression and scale parameters as well as proper prior for skewness parameter. Then, for Bayesian inference, a Markov chain Monte Carlo method is described. Since posterior results depend on the prior hyperparameters, we estimate them adopting the empirical Bayes method as well as using a Monte Carlo EM algorithm. Furthermore, to identify possible outliers, we also apply the Bayes factor obtained through the generalized Savage-Dickey density ratio. Examining the proposed approach on simulated instance and real data, it is found to provide not only satisfactory parameter estimates rather allow identifying outliers favorably.  相似文献   

10.
In this paper, we investigate the properties of Bayes estimators of vector autoregression (VAR) coefficients and the covariance matrix under two commonly employed loss functions. We point out that the posterior mean of the variances of the VAR errors under the Jeffreys prior is likely to have an over-estimation bias. Our Bayesian computation results indicate that estimates using the constant prior on the VAR regression coefficients and the reference prior of Yang and Berger (Ann. Statist. 22 (1994) 1195) on the covariance matrix dominate the constant-Jeffreys prior estimates commonly used in applications of VAR models in macroeconomics. We also estimate a VAR model of consumption growth using both constant-reference and constant-Jeffreys priors.  相似文献   

11.
This article addresses the problem of testing whether the vectors of regression coefficients are equal for two independent normal regression models when the error variances are unknown. This problem poses severe difficulties both to the frequentist and Bayesian approaches to statistical inference. In the former approach, normal hypothesis testing theory does not apply because of the unrelated variances. In the latter, the prior distributions typically used for the parameters are improper and hence the Bayes factor-based solution cannot be used.We propose a Bayesian solution to this problem in which no subjective input is considered. We first generate “objective” proper prior distributions (intrinsic priors) for which the Bayes factor and model posterior probabilities are well defined. The posterior probability of each model is used as a model selection tool. This consistent procedure of testing hypotheses is compared with some of the frequentist approximate tests proposed in the literature.  相似文献   

12.
An extension of Kleffe–Rao model, an extended mixed model with random sampling variances, is considered. Empirical Bayes estimation is found to be very effective under such a model. The empirical Bayes estimators do not have a closed form. A second order Laplace approximation is proposed which works well for moderately large sample sizes. This approximation is specially useful when the uncertainties of the proposed empirical Bayes estimators are measured by the parametric bootstrap technique. A numerical example is considered to demonstrate the method.  相似文献   

13.
In this paper we consider Goodman's association models and weighted log ratio analysis (LRA). In particular, by combining these two methods, we obtain different weighted log ratio analyses that we can extend to analyse a rates matrix, obtained by calculating the ratio between two initial multidimensional contingency tables. Our approach is illustrated by an empirical study. The selection of the model, to be analysed through the weighted LRA plot, is carried out by means of Poisson regression on rates.  相似文献   

14.
Empirical Bayes (EB) estimates in general linear mixed models are useful for the small area estimation in the sense of increasing precision of estimation of small area means. However, one potential difficulty of EB is that the overall estimate for a larger geographical area based on a (weighted) sum of EB estimates is not necessarily identical to the corresponding direct estimate such as the overall sample mean. Another difficulty is that EB estimates yield over‐shrinking, which results in the sampling variance smaller than the posterior variance. One way to fix these problems is the benchmarking approach based on the constrained empirical Bayes (CEB) estimators, which satisfy the constraints that the aggregated mean and variance are identical to the requested values of mean and variance. In this paper, we treat the general mixed models, derive asymptotic approximations of the mean squared error (MSE) of CEB and provide second‐order unbiased estimators of MSE based on the parametric bootstrap method. These results are applied to natural exponential families with quadratic variance functions. As a specific example, the Poisson‐gamma model is dealt with, and it is illustrated that the CEB estimates and their MSE estimates work well through real mortality data.  相似文献   

15.
In this article, we introduce a new weighted quantile regression method. Traditionally, the estimation of the parameters involved in quantile regression is obtained by minimizing a loss function based on absolute distances with weights independent of explanatory variables. Specifically, we study a new estimation method using a weighted loss function with the weights associated with explanatory variables so that the performance of the resulting estimation can be improved. In full generality, we derive the asymptotic distribution of the weighted quantile regression estimators for any uniformly bounded positive weight function independent of the response. Two practical weighting schemes are proposed, each for a certain type of data. Monte Carlo simulations are carried out for comparing our proposed methods with the classical approaches. We also demonstrate the proposed methods using two real-life data sets from the literature. Both our simulation study and the results from these examples show that our proposed method outperforms the classical approaches when the relative efficiency is measured by the mean-squared errors of the estimators.  相似文献   

16.
Wavelet shrinkage estimation is an increasingly popular method for signal denoising and compression. Although Bayes estimators can provide excellent mean-squared error (MSE) properties, the selection of an effective prior is a difficult task. To address this problem, we propose empirical Bayes (EB) prior selection methods for various error distributions including the normal and the heavier-tailed Student t -distributions. Under such EB prior distributions, we obtain threshold shrinkage estimators based on model selection, and multiple-shrinkage estimators based on model averaging. These EB estimators are seen to be computationally competitive with standard classical thresholding methods, and to be robust to outliers in both the data and wavelet domains. Simulated and real examples are used to illustrate the flexibility and improved MSE performance of these methods in a wide variety of settings.  相似文献   

17.
Composite quantile regression (CQR) is motivated by the desire to have an estimator for linear regression models that avoids the breakdown of the least-squares estimator when the error variance is infinite, while having high relative efficiency even when the least-squares estimator is fully efficient. Here, we study two weighting schemes to further improve the efficiency of CQR, motivated by Jiang et al. [Oracle model selection for nonlinear models based on weighted composite quantile regression. Statist Sin. 2012;22:1479–1506]. In theory the two weighting schemes are asymptotically equivalent to each other and always result in more efficient estimators compared with CQR. Although the first weighting scheme is hard to implement, it sheds light on in what situations the improvement is expected to be large. A main contribution is to theoretically and empirically identify that standard CQR has good performance compared with weighted CQR only when the error density is logistic or close to logistic in shape, which was not noted in the literature.  相似文献   

18.
Empirical Bayes estimates of the local false discovery rate can reflect uncertainty about the estimated prior by supplementing their Bayesian posterior probabilities with confidence levels as posterior probabilities. This use of coherent fiducial inference with hierarchical models generates set estimators that propagate uncertainty to varying degrees. Some of the set estimates approach estimates from plug-in empirical Bayes methods for high numbers of comparisons and can come close to the usual confidence sets given a sufficiently low number of comparisons.  相似文献   

19.
Random effects model can account for the lack of fitting a regression model and increase precision of estimating area‐level means. However, in case that the synthetic mean provides accurate estimates, the prior distribution may inflate an estimation error. Thus, it is desirable to consider the uncertain prior distribution, which is expressed as the mixture of a one‐point distribution and a proper prior distribution. In this paper, we develop an empirical Bayes approach for estimating area‐level means, using the uncertain prior distribution in the context of a natural exponential family, which we call the empirical uncertain Bayes (EUB) method. The regression model considered in this paper includes the Poisson‐gamma and the binomial‐beta, and the normal‐normal (Fay–Herriot) model, which are typically used in small area estimation. We obtain the estimators of hyperparameters based on the marginal likelihood by using a well‐known expectation‐maximization algorithm and propose the EUB estimators of area means. For risk evaluation of the EUB estimator, we derive a second‐order unbiased estimator of a conditional mean squared error by using some techniques of numerical calculation. Through simulation studies and real data applications, we evaluate a performance of the EUB estimator and compare it with the usual empirical Bayes estimator.  相似文献   

20.
This paper deals with the problem of estimating the binomial parameter via the nonparametric empirical Bayes approach. This estimation problem has the feature that estimators which are asymptotically optimal in the usual empirical Bayes sense do not exist (Robbins (1958, 1964)), However, as pointed out by Liang (1934) and Gupta and Liang (1988), it is possible to construct asymptotically optimal empirical Bayes estimators if the unknown prior is symmetric about the point 1/2, In this paper, assuming symmetric priors a monotone empirical Bayes estimator is constructed by using the isotonic regression method. This estimator is asymptotically optimal in the usual empirical Bayes sense. The corresponding rate of convergence is investigated and shown to be of order n-1, where n is the number of past observations at hand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号