首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In practice, it often happens that we have a number of base methods of classification. We are not able to clearly determine which method is optimal in the sense of the smallest error rate. Then we have a combined method that allows us to consolidate information from multiple sources in a better classifier. I propose a different approach, a sequential approach. Sequentiality is understood here in the sense of adding posterior probabilities to the original data set and so created data are used during classification process. We combine posterior probabilities obtained from base classifiers using all combining methods. Finally, we combine these probabilities using a mean combining method. To the original data set we add obtained posterior probabilities as additional features. In each step we change our additional probabilities to achieve the minimum error rate for base methods. Experimental results on different data sets demonstrate that the method is efficient and that this approach outperforms base methods providing a reduction in the mean classification error rate.  相似文献   

2.
Summary.  Many contemporary classifiers are constructed to provide good performance for very high dimensional data. However, an issue that is at least as important as good classification is determining which of the many potential variables provide key information for good decisions. Responding to this issue can help us to determine which aspects of the datagenerating mechanism (e.g. which genes in a genomic study) are of greatest importance in terms of distinguishing between populations. We introduce tilting methods for addressing this problem. We apply weights to the components of data vectors, rather than to the data vectors themselves (as is commonly the case in related work). In addition we tilt in a way that is governed by L 2-distance between weight vectors, rather than by the more commonly used Kullback–Leibler distance. It is shown that this approach, together with the added constraint that the weights should be non-negative, produces an algorithm which eliminates vector components that have little influence on the classification decision. In particular, use of the L 2-distance in this problem produces properties that are reminiscent of those that arise when L 1-penalties are employed to eliminate explanatory variables in very high dimensional prediction problems, e.g. those involving the lasso. We introduce techniques that can be implemented very rapidly, and we show how to use bootstrap methods to assess the accuracy of our variable ranking and variable elimination procedures.  相似文献   

3.
A general inductive Bayesian classification framework is considered using a simultaneous predictive distribution for test items. We introduce a principle of generative supervised and semi-supervised classification based on marginalizing the joint posterior distribution of labels for all test items. The simultaneous and marginalized classifiers arise under different loss functions, while both acknowledge jointly all uncertainty about the labels of test items and the generating probability measures of the classes. We illustrate for data from multiple finite alphabets that such classifiers achieve higher correct classification rates than a standard marginal predictive classifier which labels all test items independently, when training data are sparse. In the supervised case for multiple finite alphabets the simultaneous and the marginal classifiers are proven to become equal under generalized exchangeability when the amount of training data increases. Hence, the marginal classifier can be interpreted as an asymptotic approximation to the simultaneous classifier for finite sets of training data. It is also shown that such convergence is not guaranteed in the semi-supervised setting, where the marginal classifier does not provide a consistent approximation.  相似文献   

4.
Non parametric approaches to classification have gained significant attention in the last two decades. In this paper, we propose a classification methodology based on the multivariate rank functions and show that it is a Bayes rule for spherically symmetric distributions with a location shift. We show that a rank-based classifier is equivalent to optimal Bayes rule under suitable conditions. We also present an affine invariant version of the classifier. To accommodate different covariance structures, we construct a classifier based on the central rank region. Asymptotic properties of these classification methods are studied. We illustrate the performance of our proposed methods in comparison to some other depth-based classifiers using simulated and real data sets.  相似文献   

5.
Methods are proposed to combine several individual classifiers in order to develop more accurate classification rules. The proposed algorithm uses Rademacher–Walsh polynomials to combine M (≥2) individual classifiers in a nonlinear way. The resulting classifier is optimal in the sense that its misclassification error rate is always less than, or equal to, that of each constituent classifier. A number of numerical examples (based on both real and simulated data) are also given. These examples demonstrate some new, and far-reaching, benefits of working with combined classifiers.  相似文献   

6.
This paper proposes an algorithm for the classification of multi-dimensional datasets based on the conjugate Bayesian Multiple Kernel Grouping Learning (BMKGL). Using conjugate Bayesian framework improves the computation efficiency. Multiple kernels instead of a single kernel avoid the kernel selection problem which is also a computationally expensive work. Through grouping parameter learning, BMKGL can simultaneously integrate information from different dimensions and find the dimensions which contribute more to the variations of the outcome for the purpose of interpretable property. Meanwhile, BMKGL can select the most suitable combination of kernels for different dimensions so as to extract the most appropriate measure for each dimension and improve the accuracy of classification results. The simulation results illustrate that our learning process has better performance in prediction results and stability compared to some popular classifiers, such as k-nearest neighbours algorithm, support vector machine algorithm and naive Bayes classifier. BMKGL also outperforms previous methods in terms of accuracy and interpretation for the heart disease and EEG datasets.  相似文献   

7.
The Bayes classification rule offers the optimal classifier, minimizing the classification error rate, whereas the Neyman–Pearson lemma offers the optimal family of classifiers to maximize the detection rate for any given false alarm rate. These motivate studies on comparing classifiers based on similarities between the classifiers and the optimal. In this article, we define partial order relations on classifiers and families of classifiers, based on rankings of rate function values and rankings of test function values, respectively. Each partial order relation provides a sufficient condition, which yields better classification error rates or better performance on the receiver operating characteristic analysis. Various examples and applications of the partial order theorems are discussed to provide comparisons of classifiers and families of classifiers, including the comparison of cross-validation methods, training data that contains outliers, and labelling errors in training data. The Canadian Journal of Statistics 48: 152–166; 2020 © 2019 Statistical Society of Canada  相似文献   

8.
A family of Viterbi Bayesian predictive classifiers has been recently popularized for speech recognition applications with continuous acoustic signals modeled by finite mixture densities embedded in a hidden Markov framework. Here we generalize such classifiers to sequentially observed data from multiple finite alphabets and derive the optimal predictive classifier under exchangeability of the emitted symbols. We demonstrate that the optimal predictive classifier which learns from unlabelled test items improves considerably upon marginal maximum a posteriori rule in the presence of sparse training data. It is shown that the learning process saturates when the amount of test data tends to infinity, such that no further gain in classification accuracy is possible upon arrival of new test items in the long run.  相似文献   

9.
Abstract. Lasso and other regularization procedures are attractive methods for variable selection, subject to a proper choice of shrinkage parameter. Given a set of potential subsets produced by a regularization algorithm, a consistent model selection criterion is proposed to select the best one among this preselected set. The approach leads to a fast and efficient procedure for variable selection, especially in high‐dimensional settings. Model selection consistency of the suggested criterion is proven when the number of covariates d is fixed. Simulation studies suggest that the criterion still enjoys model selection consistency when d is much larger than the sample size. The simulations also show that our approach for variable selection works surprisingly well in comparison with existing competitors. The method is also applied to a real data set.  相似文献   

10.
This article deals with the problem of statistical classification when the covariate vectors can have unequal dimensions. Representations of the theoretically best classifier are given. We also propose a number of procedures for constructing consistent classifiers. Both parametric and nonparametric situations are considered but the emphasis is on the latter case. Numerical examples are also given.  相似文献   

11.
The main problem with localized discriminant techniques is the curse of dimensionality, which seems to restrict their use to the case of few variables. However, if localization is combined with a reduction of dimension the initial number of variables is less restricted. In particular it is shown that localization yields powerful classifiers even in higher dimensions if localization is combined with locally adaptive selection of predictors. A robust localized logistic regression (LLR) method is developed for which all tuning parameters are chosen data-adaptively. In an extended simulation study we evaluate the potential of the proposed procedure for various types of data and compare it to other classification procedures. In addition we demonstrate that automatic choice of localization, predictor selection and penalty parameters based on cross validation is working well. Finally the method is applied to real data sets and its real world performance is compared to alternative procedures.  相似文献   

12.
Abstract. A model‐based predictive estimator is proposed for the population proportions of a polychotomous response variable, based on a sample from the population and on auxiliary variables, whose values are known for the entire population. The responses for the non‐sample units are predicted using a multinomial logit model, which is a parametric function of the auxiliary variables. A bootstrap estimator is proposed for the variance of the predictive estimator, its consistency is proved and its small sample performance is compared with that of an analytical estimator. The proposed predictive estimator is compared with other available estimators, including model‐assisted ones, both in a simulation study involving different sampling designs and model mis‐specification, and using real data from an opinion survey. The results indicate that the prediction approach appears to use auxiliary information more efficiently than the model‐assisted approach.  相似文献   

13.
The normal linear discriminant rule (NLDR) and the normal quadratic discriminant rule (NQDR) are popular classifiers when working with normal populations. Several papers in the literature have been devoted to a comparison of these rules with respect to classification performance. An aspect which has, however, not received any attention is the effect of an initial variable selection step on the relative performance of these classification rules. Cross model validation variabie selection has been found to perform well in the linear case, and can be extended to the quadratic case. We report the results of a simulation study comparing the NLDR and the NQDR with respect to the post variable selection classification performance. It is of interest that the NQDR generally benefits from an initial variable selection step. We also comment briefly on the problem of estimating the post selection error rates of the two rules.  相似文献   

14.
Tree‐based methods are frequently used in studies with censored survival time. Their structure and ease of interpretability make them useful to identify prognostic factors and to predict conditional survival probabilities given an individual's covariates. The existing methods are tailor‐made to deal with a survival time variable that is measured continuously. However, survival variables measured on a discrete scale are often encountered in practice. The authors propose a new tree construction method specifically adapted to such discrete‐time survival variables. The splitting procedure can be seen as an extension, to the case of right‐censored data, of the entropy criterion for a categorical outcome. The selection of the final tree is made through a pruning algorithm combined with a bootstrap correction. The authors also present a simple way of potentially improving the predictive performance of a single tree through bagging. A simulation study shows that single trees and bagged‐trees perform well compared to a parametric model. A real data example investigating the usefulness of personality dimensions in predicting early onset of cigarette smoking is presented. The Canadian Journal of Statistics 37: 17‐32; 2009 © 2009 Statistical Society of Canada  相似文献   

15.
The Lasso has sparked interest in the use of penalization of the log‐likelihood for variable selection, as well as for shrinkage. We are particularly interested in the more‐variables‐than‐observations case of characteristic importance for modern data. The Bayesian interpretation of the Lasso as the maximum a posteriori estimate of the regression coefficients, which have been given independent, double exponential prior distributions, is adopted. Generalizing this prior provides a family of hyper‐Lasso penalty functions, which includes the quasi‐Cauchy distribution of Johnstone and Silverman as a special case. The properties of this approach, including the oracle property, are explored, and an EM algorithm for inference in regression problems is described. The posterior is multi‐modal, and we suggest a strategy of using a set of perfectly fitting random starting values to explore modes in different regions of the parameter space. Simulations show that our procedure provides significant improvements on a range of established procedures, and we provide an example from chemometrics.  相似文献   

16.
The goal of this paper is to compare several widely used Bayesian model selection methods in practical model selection problems, highlight their differences and give recommendations about the preferred approaches. We focus on the variable subset selection for regression and classification and perform several numerical experiments using both simulated and real world data. The results show that the optimization of a utility estimate such as the cross-validation (CV) score is liable to finding overfitted models due to relatively high variance in the utility estimates when the data is scarce. This can also lead to substantial selection induced bias and optimism in the performance evaluation for the selected model. From a predictive viewpoint, best results are obtained by accounting for model uncertainty by forming the full encompassing model, such as the Bayesian model averaging solution over the candidate models. If the encompassing model is too complex, it can be robustly simplified by the projection method, in which the information of the full model is projected onto the submodels. This approach is substantially less prone to overfitting than selection based on CV-score. Overall, the projection method appears to outperform also the maximum a posteriori model and the selection of the most probable variables. The study also demonstrates that the model selection can greatly benefit from using cross-validation outside the searching process both for guiding the model size selection and assessing the predictive performance of the finally selected model.  相似文献   

17.
Bagging, boosting, and random subspace methods are three most commonly used approaches for constructing ensemble classifiers. In this article, the effect of randomly selected feature subsets (intersectant or disjoint) on bagging and boosting is investigated. The performance of the related ensemble methods are compared by conducting experiments on some UCI benchmark datasets. The results demonstrate that bagging can be generally improved using the randomly selected feature subsets whereas boosting can only be optimized in some cases. Furthermore, the diversity between classifiers in an ensemble is also discussed and related to the prediction accuracy of the ensemble classifier.  相似文献   

18.
Bagging and Boosting are two main ensemble approaches consolidating the decisions of several hypotheses. The diversity of the ensemble members is considered to be a significant element to obtain generalization error. Here, an inventive method called EBAGTS (ensemble-based artificially generated training samples) is proposed to generate ensembles. It manipulates training examples in three ways in order to build various hypotheses straightforwardly: drawing a sub-sample from training set, reducing/raising error-prone training instances, and reducing/raising local instances around error-prone regions. The proposed method is a straightforward, generic framework utilizing any base classifier as its ensemble members to assemble a powerfully built combinational classifier. Decision-tree classifier and multilayer perceptron classifier as some basic classifiers have been employed in the experiments to indicate the proposed method accomplish higher predictive accuracy compared to meta-learning algorithms like Boosting and Bagging. Furthermore, EBAGTS outperforms Boosting more impressively as the training data set gets broader. It is illustrated that EBAGTS can fulfill better performance comparing to the state of the art.  相似文献   

19.
This paper presents a novel ensemble classifier generation method by integrating the ideas of bootstrap aggregation and Principal Component Analysis (PCA). To create each individual member of an ensemble classifier, PCA is applied to every out-of-bag sample and the computed coefficients of all principal components are stored, and then the principal components calculated on the corresponding bootstrap sample are taken as additional elements of the original feature set. A classifier is trained with the bootstrap sample and some features randomly selected from the new feature set. The final ensemble classifier is constructed by majority voting of the trained base classifiers. The results obtained by empirical experiments and statistical tests demonstrate that the proposed method performs better than or as well as several other ensemble methods on some benchmark data sets publicly available from the UCI repository. Furthermore, the diversity-accuracy patterns of the ensemble classifiers are investigated by kappa-error diagrams.  相似文献   

20.
Many model‐free dimension reduction methods have been developed for high‐dimensional regression data but have not paid much attention on problems with non‐linear confounding. In this paper, we propose an inverse‐regression method of dependent variable transformation for detecting the presence of non‐linear confounding. The benefit of using geometrical information from our method is highlighted. A ratio estimation strategy is incorporated in our approach to enhance the interpretation of variable selection. This approach can be implemented not only in principal Hessian directions (PHD) but also in other recently developed dimension reduction methods. Several simulation examples that are reported for illustration and comparisons are made with sliced inverse regression and PHD in ignorance of non‐linear confounding. An illustrative application to one real data is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号