首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Based on a random cluster representation, the Swendsen–Wang algorithm for the Ising and Potts distributions is extended to a class of continuous Markov random fields. The algorithm can be described briefly as follows. A given configuration is decomposed into clusters. Probabilities for flipping the values of the random variables in each cluster are calculated. According to these probabilities, values of all the random variables in each cluster will be either updated or kept unchanged and this is done independently across the clusters. A new configuration is then obtained. We will show through a simulation study that, like the Swendsen–Wang algorithm in the case of Ising and Potts distributions, the cluster algorithm here also outperforms the Gibbs sampler in beating the critical slowing down for some strongly correlated Markov random fields.  相似文献   

2.
We introduce a class of random fields that can be understood as discrete versions of multicolour polygonal fields built on regular linear tessellations. We focus first on a subclass of consistent polygonal fields, for which we show Markovianity and solvability by means of a dynamic representation. This representation is used to design new sampling techniques for Gibbsian modifications of such fields, a class which covers lattice‐based random fields. A flux‐based modification is applied to the extraction of the field tracks network from a Synthetic Aperture Radar image of a rural area.  相似文献   

3.
Summary. Enormous quantities of geoelectrical data are produced daily and often used for large scale reservoir modelling. To interpret these data requires reliable and efficient inversion methods which adequately incorporate prior information and use realistically complex modelling structures. We use models based on random coloured polygonal graphs as a powerful and flexible modelling framework for the layered composition of the Earth and we contrast our approach with earlier methods based on smooth Gaussian fields. We demonstrate how the reconstruction algorithm may be efficiently implemented through the use of multigrid Metropolis–coupled Markov chain Monte Carlo methods and illustrate the method on a set of field data.  相似文献   

4.
Abstract.  The purpose of this paper was to construct perfect samplers for length-interacting Arak–Clifford–Surgailis polygonal Markov fields in the plane with nodes of order 2 ( V -shaped nodes). This is achieved by providing for the polygonal fields a hard core marked point process representation with individual points carrying polygonal loops as their marks, so that the coupling from the past and clan of ancestors routines can be adopted.  相似文献   

5.
We survey the use of Markov models from stochastic geometry as priors in ‘high-level’ computer vision, in direct analogy with the use of discrete Markov random fields in ‘low-level’ vision. There are analogues of the Gibbs sampler, ICM and simulated annealing, and connections with existing methods in computer vision.  相似文献   

6.
Fitting Gaussian Markov Random Fields to Gaussian Fields   总被引:3,自引:0,他引:3  
This paper discusses the following task often encountered in building Bayesian spatial models: construct a homogeneous Gaussian Markov random field (GMRF) on a lattice with correlation properties either as present in some observed data, or consistent with prior knowledge. The Markov property is essential in designing computationally efficient Markov chain Monte Carlo algorithms to analyse such models. We argue that we can restate both tasks as that of fitting a GMRF to a prescribed stationary Gaussian field on a lattice when both local and global properties are important. We demonstrate that using the KullbackLeibler discrepancy often fails for this task, giving severely undesirable behaviour of the correlation function for lags outside the neighbourhood. We propose a new criterion that resolves this difficulty, and demonstrate that GMRFs with small neighbourhoods can approximate Gaussian fields surprisingly well even with long correlation lengths. Finally, we discuss implications of our findings for likelihood based inference for general Markov random fields when global properties are also important.  相似文献   

7.
Let T be a two-dimensional region, and let X be a surface dejined on T. The values of X on T, constitute an image, or pattern. The true value of X at any point on T cannot be directly observed, but data can be recorded which provide information about X. The aim is to reconstruct X using the prior knowledge that X will vary smoothly over most of T, but may exhibit jump discontinuities over line segments. This information can be incorporated via Bayes' theorem, using a polygonal Markov random field on T as prior distribution. Under this continuum model, X may in principle be estimated according to standard criteria. In practice, the techniques rely on simulation of the posterior distribution. A natural family of conjugate priors is identified, and a class of spatial-temporal Markov processes is constructed on the uncountable state space; simulation then proceeds by a method of analogous to the Gibbs sampler.  相似文献   

8.
Summary. Rainfall data are often collected at coarser spatial scales than required for input into hydrology and agricultural models. We therefore describe a spatiotemporal model which allows multiple imputation of rainfall at fine spatial resolutions, with a realistic dependence structure in both space and time and with the total rainfall at the coarse scale consistent with that observed. The method involves the transformation of the fine scale rainfall to a thresholded Gaussian process which we model as a Gaussian Markov random field. Gibbs sampling is then used to generate realizations of rainfall efficiently at the fine scale. Results compare favourably with previous, less elegant methods.  相似文献   

9.
Complex stochastic models, such as individual-based models, are becoming increasingly popular. However this complexity can often mean that the likelihood is intractable. Performing parameter estimation on the model can then be difficult. One way of doing this when the complex model is relatively quick to simulate from is approximate Bayesian computation (ABC). Rejection-ABC algorithm is not always efficient so numerous other algorithms have been proposed. One such method is ABC with Markov chain Monte Carlo (ABC–MCMC). Unfortunately for some models this method does not perform well and some alternatives have been proposed including the fsMCMC algorithm (Neal and Huang, in: Scand J Stat 42:378–396, 2015) that explores the random inputs space as well unknown model parameters. In this paper we extend the fsMCMC algorithm and take advantage of the joint parameter and random input space in order to get better mixing of the Markov Chain. We also introduce a Gibbs step that conditions on the current accepted model and allows the parameters to move as well as the random inputs conditional on this accepted model. We show empirically that this improves the efficiency of the ABC–MCMC algorithm on a queuing model and an individual-based model of the group-living bird, the woodhoopoe.  相似文献   

10.
Generalized Gibbs samplers simulate from any direction, not necessarily limited to the coordinate directions of the parameters of the objective function. We study how to optimally choose such directions in a random scan Gibbs sampler setting. We consider that optimal directions will be those that minimize the Kullback–Leibler divergence of two Markov chain Monte Carlo steps. Two distributions over direction are proposed for the multivariate Normal objective function. The resulting algorithms are used to simulate from a truncated multivariate Normal distribution, and the performance of our algorithms is compared with the performance of two algorithms based on the Gibbs sampler.  相似文献   

11.
In this paper, we discuss a fully Bayesian quantile inference using Markov Chain Monte Carlo (MCMC) method for longitudinal data models with random effects. Under the assumption of error term subject to asymmetric Laplace distribution, we establish a hierarchical Bayesian model and obtain the posterior distribution of unknown parameters at τ-th level. We overcome the current computational limitations using two approaches. One is the general MCMC technique with Metropolis–Hastings algorithm and another is the Gibbs sampling from the full conditional distribution. These two methods outperform the traditional frequentist methods under a wide array of simulated data models and are flexible enough to easily accommodate changes in the number of random effects and in their assumed distribution. We apply the Gibbs sampling method to analyse a mouse growth data and some different conclusions from those in the literatures are obtained.  相似文献   

12.
In this paper, we discuss the implementation of fully Bayesian analysis of dynamic image sequences in the context of stochastic deformable templates for shape modelling, Markov/Gibbs random fields for modelling textures, and dynomation.

Throughout, Markov chain Monte Carlo algorithms are used to perform the Bayesian calculations.  相似文献   


13.
The goal of this paper is to compare the performance of two estimation approaches, the quasi-likelihood estimating equation and the pseudo-likelihood equation, against model mis-specification for non-separable binary data. This comparison, to the authors’ knowledge, has not been done yet. In this paper, we first extend the quasi-likelihood work on spatial data to non-separable binary data. Some asymptotic properties of the quasi-likelihood estimate are also briefly discussed. We then use the techniques of a truncated Gaussian random field with a quasi-likelihood type model and a Gibbs sampler with a conditional model in the Markov random field to generate spatial–temporal binary data, respectively. For each simulated data set, both of the estimation methods are used to estimate parameters. Some discussion about the simulation results are also included.  相似文献   

14.
Discrete Markov random fields form a natural class of models to represent images and spatial datasets. The use of such models is, however, hampered by a computationally intractable normalising constant. This makes parameter estimation and a fully Bayesian treatment of discrete Markov random fields difficult. We apply approximation theory for pseudo-Boolean functions to binary Markov random fields and construct approximations and upper and lower bounds for the associated computationally intractable normalising constant. As a by-product of this process we also get a partially ordered Markov model approximation of the binary Markov random field. We present numerical examples with both the pairwise interaction Ising model and with higher-order interaction models, showing the quality of our approximations and bounds. We also present simulation examples and one real data example demonstrating how the approximations and bounds can be applied for parameter estimation and to handle a fully Bayesian model computationally.  相似文献   

15.
We consider intrinsic autoregression models at multiple resolutions. Firstly, we describe a method to construct a class of approximately coherent Markov random fields (MRF) at different scales, overcoming the problem that the marginal Gaussian MRF is not, in general, a MRF with respect to any non-trivial neighbourhood structure. This is based on the approximation of non-Markov Gaussian fields as Gaussian MRFs and is optimal according to different theoretic notions such as Kullback–Leibler divergence. We extend the method to intrinsic autoregressions providing a novel multi-resolution framework.  相似文献   

16.
Bayesian shrinkage methods have generated a lot of interest in recent years, especially in the context of high‐dimensional linear regression. In recent work, a Bayesian shrinkage approach using generalized double Pareto priors has been proposed. Several useful properties of this approach, including the derivation of a tractable three‐block Gibbs sampler to sample from the resulting posterior density, have been established. We show that the Markov operator corresponding to this three‐block Gibbs sampler is not Hilbert–Schmidt. We propose a simpler two‐block Gibbs sampler and show that the corresponding Markov operator is trace class (and hence Hilbert–Schmidt). Establishing the trace class property for the proposed two‐block Gibbs sampler has several useful consequences. Firstly, it implies that the corresponding Markov chain is geometrically ergodic, thereby implying the existence of a Markov chain central limit theorem, which in turn enables computation of asymptotic standard errors for Markov chain‐based estimates of posterior quantities. Secondly, because the proposed Gibbs sampler uses two blocks, standard recipes in the literature can be used to construct a sandwich Markov chain (by inserting an appropriate extra step) to gain further efficiency and to achieve faster convergence. The trace class property for the two‐block sampler implies that the corresponding sandwich Markov chain is also trace class and thereby geometrically ergodic. Finally, it also guarantees that all eigenvalues of the sandwich chain are dominated by the corresponding eigenvalues of the Gibbs sampling chain (with at least one strict domination). Our results demonstrate that a minor change in the structure of a Markov chain can lead to fundamental changes in its theoretical properties. We illustrate the improvement in efficiency resulting from our proposed Markov chains using simulated and real examples.  相似文献   

17.
18.
19.
We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically, in this article we carry out finite and infinite mixture model-based clustering for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with a prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between models with different numbers of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split–merge proposals to improve the performance of the MCMC algorithm. We apply our proposed algorithms to simulated data as well as a real-data example, and the results demonstrate the desired performance of the new sampler.  相似文献   

20.
Markov chain Monte Carlo (MCMC) routines have become a fundamental means for generating random variates from distributions otherwise difficult to sample. The Hastings sampler, which includes the Gibbs and Metropolis samplers as special cases, is the most popular MCMC method. A number of implementations are available for running these MCMC routines varying in the order through which the components or blocks of the random vector of interest X are cycled or visited. The two most common implementations are the deterministic sweep strategy, whereby the components or blocks of X are updated successively and in a fixed order, and the random sweep strategy, whereby the coordinates or blocks of X are updated in a randomly determined order. In this article, we present a general representation for MCMC updating schemes showing that the deterministic scan is a special case of the random scan. We also discuss decision criteria for choosing a sweep strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号