共查询到20条相似文献,搜索用时 12 毫秒
1.
《Scandinavian Journal of Statistics》2018,45(2):301-323
A general class of rank statistics based on the characteristic function is introduced for testing goodness‐of‐fit hypotheses about the copula of a continuous random vector. These statistics are defined as L 2 weighted functional distances between a nonparametric estimator and a semi‐parametric estimator of the characteristic function associated with a copula. It is shown that these statistics behave asymptotically as degenerate V ‐statistics of order four and that the limit distributions have representations in terms of weighted sums of independent chi‐square variables. The consistency of the tests against general alternatives is established and an asymptotically valid parametric bootstrap is suggested for the computation of the critical values of the tests. The behaviour of the new tests in small and moderate sample sizes is investigated with the help of simulations and compared with a competing test based on the empirical copula. Finally, the methodology is illustrated on a five‐dimensional data set. 相似文献
2.
Graciela Boente Daniela Rodriguez Wenceslao González Manteiga 《Scandinavian Journal of Statistics》2014,41(1):259-275
In this paper, we study the problem of testing the hypothesis on whether the density f of a random variable on a sphere belongs to a given parametric class of densities. We propose two test statistics based on the L2 and L1 distances between a non‐parametric density estimator adapted to circular data and a smoothed version of the specified density. The asymptotic distribution of the L2 test statistic is provided under the null hypothesis and contiguous alternatives. We also consider a bootstrap method to approximate the distribution of both test statistics. Through a simulation study, we explore the moderate sample performance of the proposed tests under the null hypothesis and under different alternatives. Finally, the procedure is illustrated by analysing a real data set based on wind direction measurements. 相似文献
3.
Abstract. Goodness‐of‐fit tests are proposed for the skew‐normal law in arbitrary dimension. In the bivariate case the proposed tests utilize the fact that the moment‐generating function of the skew‐normal variable is quite simple and satisfies a partial differential equation of the first order. This differential equation is estimated from the sample and the test statistic is constructed as an L 2 ‐type distance measure incorporating this estimate. Extension of the procedure to dimension greater than two is suggested whereas an effective bootstrap procedure is used to study the behaviour of the new method with real and simulated data. 相似文献
4.
Abraham Martín del Campo Sarah Cepeda Caroline Uhler 《Scandinavian Journal of Statistics》2017,44(2):285-306
The Ising model is one of the simplest and most famous models of interacting systems. It was originally proposed to model ferromagnetic interactions in statistical physics and is now widely used to model spatial processes in many areas such as ecology, sociology, and genetics, usually without testing its goodness of fit. Here, we propose various test statistics and an exact goodness‐of‐fit test for the finite‐lattice Ising model. The theory of Markov bases has been developed in algebraic statistics for exact goodness‐of‐fit testing using a Monte Carlo approach. However, finding a Markov basis is often computationally intractable. Thus, we develop a Monte Carlo method for exact goodness‐of‐fit testing for the Ising model that avoids computing a Markov basis and also leads to a better connectivity of the Markov chain and hence to a faster convergence. We show how this method can be applied to analyze the spatial organization of receptors on the cell membrane. 相似文献
5.
Juan Carlos Pardo‐Fernández María Dolores Jiménez‐Gamero Anouar El Ghouch 《Scandinavian Journal of Statistics》2015,42(1):197-213
This article studies a new procedure to test for the equality of k regression curves in a fully non‐parametric context. The test is based on the comparison of empirical estimators of the characteristic functions of the regression residuals in each population. The asymptotic behaviour of the test statistic is studied in detail. It is shown that under the null hypothesis, the distribution of the test statistic converges to a finite combination of independent chi‐squared random variables with one degree of freedom. The coefficients in this linear combination can be consistently estimated. The proposed test is able to detect contiguous alternatives converging to the null at the rate n ? 1 ∕ 2. The practical performance of the test based on the asymptotic null distribution is investigated by means of simulations. 相似文献
6.
The authors propose graphical and numerical methods for checking the adequacy of the logistic regression model for matched case‐control data. Their approach is based on the cumulative sum of residuals over the covariate or linear predictor. Under the assumed model, the cumulative residual process converges weakly to a centered Gaussian limit whose distribution can be approximated via computer simulation. The observed cumulative residual pattern can then be compared both visually and analytically to a certain number of simulated realizations of the approximate limiting process under the null hypothesis. The proposed techniques allow one to check the functional form of each covariate, the logistic link function as well as the overall model adequacy. The authors assess the performance of the proposed methods through simulation studies and illustrate them using data from a cardiovascular study. 相似文献
7.
BERTHOLD R. HAAG 《Scandinavian Journal of Statistics》2008,35(4):719-738
Abstract. Testing for parametric structure is an important issue in non‐parametric regression analysis. A standard approach is to measure the distance between a parametric and a non‐parametric fit with a squared deviation measure. These tests inherit the curse of dimensionality from the non‐parametric estimator. This results in a loss of power in finite samples and against local alternatives. This article proposes to circumvent the curse of dimensionality by projecting the residuals under the null hypothesis onto the space of additive functions. To estimate this projection, the smooth backfitting estimator is used. The asymptotic behaviour of the test statistic is derived and the consistency of a wild bootstrap procedure is established. The finite sample properties are investigated in a simulation study. 相似文献
8.
The authors show how to test the goodness‐of‐fit of a linear regression model when there are missing data in the response variable. Their statistics are based on the L2 distance between nonparametric estimators of the regression function and a ‐consistent estimator of the same function under the parametric model. They obtain the limit distribution of the statistics and check the validity of their bootstrap version. Finally, a simulation study allows them to examine the behaviour of their tests, whether the samples are complete or not. 相似文献
9.
Abstract. This paper proposes, implements and investigates a new non‐parametric two‐sample test for detecting stochastic dominance. We pose the question of detecting the stochastic dominance in a non‐standard way. This is motivated by existing evidence showing that standard formulations and pertaining procedures may lead to serious errors in inference. The procedure that we introduce matches testing and model selection. More precisely, we reparametrize the testing problem in terms of Fourier coefficients of well‐known comparison densities. Next, the estimated Fourier coefficients are used to form a kind of signed smooth rank statistic. In such a setting, the number of Fourier coefficients incorporated into the statistic is a smoothing parameter. We determine this parameter via some flexible selection rule. We establish the asymptotic properties of the new test under null and alternative hypotheses. The finite sample performance of the new solution is demonstrated through Monte Carlo studies and an application to a set of survival times. 相似文献
10.
We propose several new tests for monotonicity of regression functions based on different empirical processes of residuals and pseudo‐residuals. The residuals are obtained from an unconstrained kernel regression estimator whereas the pseudo‐residuals are obtained from an increasing regression estimator. Here, in particular, we consider a recently developed simple kernel‐based estimator for increasing regression functions based on increasing rearrangements of unconstrained non‐parametric estimators. The test statistics are estimated distance measures between the regression function and its increasing rearrangement. We discuss the asymptotic distributions, consistency and small sample performances of the tests. 相似文献
11.
FRÉDÉRIC FERRATY INGRID VAN KEILEGOM PHILIPPE VIEU 《Scandinavian Journal of Statistics》2010,37(2):286-306
Abstract. We consider the functional non‐parametric regression model Y= r( χ )+?, where the response Y is univariate, χ is a functional covariate (i.e. valued in some infinite‐dimensional space), and the error ? satisfies E(? | χ ) = 0. For this model, the pointwise asymptotic normality of a kernel estimator of r (·) has been proved in the literature. To use this result for building pointwise confidence intervals for r (·), the asymptotic variance and bias of need to be estimated. However, the functional covariate setting makes this task very hard. To circumvent the estimation of these quantities, we propose to use a bootstrap procedure to approximate the distribution of . Both a naive and a wild bootstrap procedure are studied, and their asymptotic validity is proved. The obtained consistency results are discussed from a practical point of view via a simulation study. Finally, the wild bootstrap procedure is applied to a food industry quality problem to compute pointwise confidence intervals. 相似文献
12.
Fernando A. Quintana Peter Müller Ana Luisa Papoila 《Scandinavian Journal of Statistics》2015,42(4):1065-1077
We propose a random partition model that implements prediction with many candidate covariates and interactions. The model is based on a modified product partition model that includes a regression on covariates by favouring homogeneous clusters in terms of these covariates. Additionally, the model allows for a cluster‐specific choice of the covariates that are included in this evaluation of homogeneity. The variable selection is implemented by introducing a set of cluster‐specific latent indicators that include or exclude covariates. The proposed model is motivated by an application to predicting mortality in an intensive care unit in Lisboa, Portugal. 相似文献
13.
Ricardo Cao José A. Vilar Juan M. Vilar 《Australian & New Zealand Journal of Statistics》2012,54(3):301-324
Generalised variance function (GVF) models are data analysis techniques often used in large‐scale sample surveys to approximate the design variance of point estimators for population means and proportions. Some potential advantages of the GVF approach include operational simplicity, more stable sampling errors estimates and providing a convenient method of summarising results when a high number of survey variables is considered. In this paper, several parametric and nonparametric methods for GVF estimation with binary variables are proposed and compared. The behavior of these estimators is analysed under heteroscedasticity and in the presence of outliers and influential observations. An empirical study based on the annual survey of living conditions in Galicia (a region in the northwest of Spain) illustrates the behaviour of the proposed estimators. 相似文献
14.
Abstract. Non‐parametric regression models have been studied well including estimating the conditional mean function, the conditional variance function and the distribution function of errors. In addition, empirical likelihood methods have been proposed to construct confidence intervals for the conditional mean and variance. Motivated by applications in risk management, we propose an empirical likelihood method for constructing a confidence interval for the pth conditional value‐at‐risk based on the non‐parametric regression model. A simulation study shows the advantages of the proposed method. 相似文献
15.
《Scandinavian Journal of Statistics》2018,45(3):421-443
Consider a non‐parametric regression model Y =m (X )+ϵ , where m is an unknown regression function, Y is a real‐valued response variable, X is a real covariate, and ϵ is the error term. In this article, we extend the usual tests for homoscedasticity by developing consistent tests for independence between X and ϵ . Further, we investigate the local power of the proposed tests using Le Cam's contiguous alternatives. An asymptotic power study under local alternatives along with extensive finite sample simulation study shows that the performance of the new tests is competitive with existing ones. Furthermore, the practicality of the new tests is shown using two real data sets. 相似文献
16.
Abstract. A non‐parametric rank‐based test of exchangeability for bivariate extreme‐value copulas is first proposed. The two key ingredients of the suggested approach are the non‐parametric rank‐based estimators of the Pickands dependence function recently studied by Genest and Segers, and a multiplier technique for obtaining approximate p‐values for the derived statistics. The proposed approach is then extended to left‐tail decreasing dependence structures that are not necessarily extreme‐value copulas. Large‐scale Monte Carlo experiments are used to investigate the level and power of the various versions of the test and show that the proposed procedure can be substantially more powerful than tests of exchangeability derived directly from the empirical copula. The approach is illustrated on well‐known financial data. 相似文献
17.
Assessing the absolute risk for a future disease event in presently healthy individuals has an important role in the primary prevention of cardiovascular diseases (CVD) and other chronic conditions. In this paper, we study the use of non‐parametric Bayesian hazard regression techniques and posterior predictive inferences in the risk assessment task. We generalize our previously published Bayesian multivariate monotonic regression procedure to a survival analysis setting, combined with a computationally efficient estimation procedure utilizing case–base sampling. To achieve parsimony in the model fit, we allow for multidimensional relationships within specified subsets of risk factors, determined either on a priori basis or as a part of the estimation procedure. We apply the proposed methods for 10‐year CVD risk assessment in a Finnish population. © 2014 Board of the Foundation of the Scandinavian Journal of Statistics 相似文献
18.
In this paper, we consider non‐parametric copula inference under bivariate censoring. Based on an estimator of the joint cumulative distribution function, we define a discrete and two smooth estimators of the copula. The construction that we propose is valid for a large range of estimators of the distribution function and therefore for a large range of bivariate censoring frameworks. Under some conditions on the tails of the distributions, the weak convergence of the corresponding copula processes is obtained in l∞([0,1]2). We derive the uniform convergence rates of the copula density estimators deduced from our smooth copula estimators. Investigation of the practical behaviour of these estimators is performed through a simulation study and two real data applications, corresponding to different censoring settings. We use our non‐parametric estimators to define a goodness‐of‐fit procedure for parametric copula models. A new bootstrap scheme is proposed to compute the critical values. 相似文献
19.
Brajendra C. Sutradhar K.V. Vineetha Warriyar Nan Zheng 《Australian & New Zealand Journal of Statistics》2016,58(3):397-434
This paper deals with a longitudinal semi‐parametric regression model in a generalised linear model setup for repeated count data collected from a large number of independent individuals. To accommodate the longitudinal correlations, we consider a dynamic model for repeated counts which has decaying auto‐correlations as the time lag increases between the repeated responses. The semi‐parametric regression function involved in the model contains a specified regression function in some suitable time‐dependent covariates and a non‐parametric function in some other time‐dependent covariates. As far as the inference is concerned, because the non‐parametric function is of secondary interest, we estimate this function consistently using the independence assumption‐based well‐known quasi‐likelihood approach. Next, the proposed longitudinal correlation structure and the estimate of the non‐parametric function are used to develop a semi‐parametric generalised quasi‐likelihood approach for consistent and efficient estimation of the regression effects in the parametric regression function. The finite sample performance of the proposed estimation approach is examined through an intensive simulation study based on both large and small samples. Both balanced and unbalanced cluster sizes are incorporated in the simulation study. The asymptotic performances of the estimators are given. The estimation methodology is illustrated by reanalysing the well‐known health care utilisation data consisting of counts of yearly visits to a physician by 180 individuals for four years and several important primary and secondary covariates. 相似文献
20.
Romain Azaïs François Dufour Anne Gégout‐Petit 《Scandinavian Journal of Statistics》2014,41(4):950-969
This paper presents a non‐parametric method for estimating the conditional density associated to the jump rate of a piecewise‐deterministic Markov process. In our framework, the estimation needs only one observation of the process within a long time interval. Our method relies on a generalization of Aalen's multiplicative intensity model. We prove the uniform consistency of our estimator, under some reasonable assumptions related to the primitive characteristics of the process. A simulation study illustrates the behaviour of our estimator. 相似文献