首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ultra-high dimensional data arise in many fields of modern science, such as medical science, economics, genomics and imaging processing, and pose unprecedented challenge for statistical analysis. With such rapid-growth size of scientific data in various disciplines, feature screening becomes a primary step to reduce the high dimensionality to a moderate scale that can be handled by the existing penalized methods. In this paper, we introduce a simple and robust feature screening method without any model assumption to tackle high dimensional censored data. The proposed method is model-free and hence applicable to a general class of survival models. The sure screening and ranking consistency properties without any finite moment condition of the predictors and the response are established. The computation of the proposed method is rather straightforward. Finite sample performance of the newly proposed method is examined via extensive simulation studies. An application is illustrated with the gene association study of the mantle cell lymphoma.  相似文献   

2.
Most feature screening methods for ultrahigh-dimensional classification explicitly or implicitly assume the covariates are continuous. However, in the practice, it is quite common that both categorical and continuous covariates appear in the data, and applicable feature screening method is very limited. To handle this non-trivial situation, we propose an entropy-based feature screening method, which is model free and provides a unified screening procedure for both categorical and continuous covariates. We establish the sure screening and ranking consistency properties of the proposed procedure. We investigate the finite sample performance of the proposed procedure by simulation studies and illustrate the method by a real data analysis.  相似文献   

3.
In this paper, we propose a conditional quantile independence screening approach for ultra-high-dimensional heterogeneous data given some known, significant and low-dimensional variables. The new method does not require imposing a specific model structure for the response and covariates and can detect additional features that contribute to conditional quantiles of the response given those already-identified important predictors. We also prove that the proposed procedure enjoys the ranking consistency and sure screening properties. Some simulation studies are carried out to examine the performance of advised procedure. At last, we illustrate it by a real data example.  相似文献   

4.
Quantile regression is a flexible approach to assessing covariate effects on failure time, which has attracted considerable interest in survival analysis. When the dimension of covariates is much larger than the sample size, feature screening and variable selection become extremely important and indispensable. In this article, we introduce a new feature screening method for ultrahigh dimensional censored quantile regression. The proposed method can work for a general class of survival models, allow for heterogeneity of data and enjoy desirable properties including the sure screening property and the ranking consistency property. Moreover, an iterative version of screening algorithm has also been proposed to accommodate more complex situations. Monte Carlo simulation studies are designed to evaluate the finite sample performance under different model settings. We also illustrate the proposed methods through an empirical analysis.  相似文献   

5.
Feature selection is an important technique for ultrahigh-dimensional data analysis. Most feature selection methods such as SIS and its relevant versions heavily depend on the specified model structures. Furthermore, feature interactions are usually not taken into account in the existing literature. In this paper, we present a novel feature selection method for the model with variable interactions, without the use of structure assumption. Thus, the new ranking criterion is flexible and can deal with the models that contain interactions. Moreover, the new screening procedures are not complex, consequently, they are computationally efficient and the theoretical properties such as the ranking consistency and sure screening properties can be easily obtained. Several real and simulation examples are presented to illustrate the methodology.  相似文献   

6.
In recent years, numerous feature screening schemes have been developed for ultra-high dimensional standard survival data with only one failure event. Nevertheless, existing literature pays little attention to related investigations for competing risks data, in which subjects suffer from multiple mutually exclusive failures. In this article, we develop a new marginal feature screening for ultra-high dimensional time-to-event data to allow for competing risks. The proposed procedure is model-free, and robust against heavy-tailed distributions and potential outliers for time to the type of failure of interest. Apart from this, it is invariant to any monotone transformation of event time of interest. Under rather mild assumptions, it is shown that the newly suggested approach possesses the ranking consistency and sure independence screening properties. Some numerical studies are conducted to evaluate the finite-sample performance of our method and make a comparison with its competitor, while an application to a real data set is provided to serve as an illustration.  相似文献   

7.
In this article, a new model-free feature screening method named after probability density (mass) function distance (PDFD) correlation is presented for ultrahigh-dimensional data analysis. We improve the fused-Kolmogorov filter (F-KOL) screening procedure through probability density distribution. The proposed method is also fully nonparametric and can be applied to more general types of predictors and responses, including discrete and continuous random variables. Kernel density estimate method and numerical integration are applied to obtain the estimator we proposed. The results of simulation studies indicate that the fused-PDFD performs better than other existing screening methods, such as F-KOL filter, sure-independent screening (SIS), sure independent ranking and screening (SIRS), distance correlation sure-independent screening (DCSIS) and robust ranking correlation screening (RRCS). Finally, we demonstrate the validity of fused-PDFD by a real data example.  相似文献   

8.
Case‐cohort design has been demonstrated to be an economical and efficient approach in large cohort studies when the measurement of some covariates on all individuals is expensive. Various methods have been proposed for case‐cohort data when the dimension of covariates is smaller than sample size. However, limited work has been done for high‐dimensional case‐cohort data which are frequently collected in large epidemiological studies. In this paper, we propose a variable screening method for ultrahigh‐dimensional case‐cohort data under the framework of proportional model, which allows the covariate dimension increases with sample size at exponential rate. Our procedure enjoys the sure screening property and the ranking consistency under some mild regularity conditions. We further extend this method to an iterative version to handle the scenarios where some covariates are jointly important but are marginally unrelated or weakly correlated to the response. The finite sample performance of the proposed procedure is evaluated via both simulation studies and an application to a real data from the breast cancer study.  相似文献   

9.
In this paper we design a sure independent ranking and screening procedure for censored regression (cSIRS, for short) with ultrahigh dimensional covariates. The inverse probability weighted cSIRS procedure is model-free in the sense that it does not specify a parametric or semiparametric regression function between the response variable and the covariates. Thus, it is robust to model mis-specification. This model-free property is very appealing in ultrahigh dimensional data analysis, particularly when there is lack of information for the underlying regression structure. The cSIRS procedure is also robust in the presence of outliers or extreme values as it merely uses the rank of the censored response variable. We establish both the sure screening and the ranking consistency properties for the cSIRS procedure when the number of covariates p satisfies \(p=o\{\exp (an)\}\), where a is a positive constant and n is the available sample size. The advantages of cSIRS over existing competitors are demonstrated through comprehensive simulations and an application to the diffuse large-B-cell lymphoma data set.  相似文献   

10.
Feature screening and variable selection are fundamental in analysis of ultrahigh-dimensional data, which are being collected in diverse scientific fields at relatively low cost. Distance correlation-based sure independence screening (DC-SIS) has been proposed to perform feature screening for ultrahigh-dimensional data. The DC-SIS possesses sure screening property and filters out unimportant predictors in a model-free manner. Like all independence screening methods, however, it fails to detect the truly important predictors which are marginally independent of the response variable due to correlations among predictors. When there are many irrelevant predictors which are highly correlated with some strongly active predictors, the independence screening may miss other active predictors with relatively weak marginal signals. To improve the performance of DC-SIS, we introduce an effective iterative procedure based on distance correlation to detect all truly important predictors and potentially interactions in both linear and nonlinear models. Thus, the proposed iterative method possesses the favourable model-free and robust properties. We further illustrate its excellent finite-sample performance through comprehensive simulation studies and an empirical analysis of the rat eye expression data set.  相似文献   

11.
In many conventional scientific investigations with high or ultra-high dimensional feature spaces, the relevant features, though sparse, are large in number compared with classical statistical problems, and the magnitude of their effects tapers off. It is reasonable to model the number of relevant features as a diverging sequence when sample size increases. In this paper, we investigate the properties of the extended Bayes information criterion (EBIC) (Chen and Chen, 2008) for feature selection in linear regression models with diverging number of relevant features in high or ultra-high dimensional feature spaces. The selection consistency of the EBIC in this situation is established. The application of EBIC to feature selection is considered in a SCAD cum EBIC procedure. Simulation studies are conducted to demonstrate the performance of the SCAD cum EBIC procedure in finite sample cases.  相似文献   

12.
This paper is concerned with the stable feature screening for the ultrahigh dimensional data. To deal with the ultrahigh dimensional data problem and screen the important features, a set-averaging measurement is proposed. The model averaging technique and the conditional quantile method are used to construct the weighted set-averaging feature screening procedure to identify the relationships between the possible predictors and the response variable. The proposed screening method is model free, stable and possesses the sure screening property under some regular conditions. Some Monte Carlo simulations and a real data application are conducted to evaluate the performance of the proposed procedure.  相似文献   

13.
In the era of Big Data, extracting the most important exploratory variables available in ultrahigh-dimensional data plays a key role in scientific researches. Existing researches have been mainly focusing on applying the extracted exploratory variables to describe the central tendency of their related response variables. For a response variable, its variability characteristic is as much important as the central tendency in statistical inference. This paper focuses on the variability and proposes a new model-free feature screening approach: sure explained variability and independence screening (SEVIS). The core of SEVIS is to take the advantage of recently proposed asymmetric and nonlinear generalised measures of correlation in the screening. Under some mild conditions, the paper shows that SEVIS not only possesses desired sure screening property and ranking consistency property, but also is a computational convenient variable selection method to deal with ultrahigh-dimensional data sets with more features than observations. The superior performance of SEVIS, compared with existing model-free methods, is illustrated in extensive simulations. A real example in ultrahigh-dimensional variable selection demonstrates that the variables selected by SEVIS better explain not only the response variables, but also the variables selected by other methods.  相似文献   

14.
The additive Cox model is flexible and powerful for modelling the dynamic changes of regression coefficients in the survival analysis. This paper is concerned with feature screening for the additive Cox model with ultrahigh-dimensional covariates. The proposed screening procedure can effectively identify active predictors. That is, with probability tending to one, the selected variable set includes the actual active predictors. In order to carry out the proposed procedure, we propose an effective algorithm and establish the ascent property of the proposed algorithm. We further prove that the proposed procedure possesses the sure screening property. Furthermore, we examine the finite sample performance of the proposed procedure via Monte Carlo simulations, and illustrate the proposed procedure by a real data example.  相似文献   

15.
Ultrahigh dimensional data with both categorical responses and categorical covariates are frequently encountered in the analysis of big data, for which feature screening has become an indispensable statistical tool. We propose a Pearson chi-square based feature screening procedure for categorical response with ultrahigh dimensional categorical covariates. The proposed procedure can be directly applied for detection of important interaction effects. We further show that the proposed procedure possesses screening consistency property in the terminology of Fan and Lv (2008). We investigate the finite sample performance of the proposed procedure by Monte Carlo simulation studies and illustrate the proposed method by two empirical datasets.  相似文献   

16.
This paper is concerned with the conditional feature screening for ultra-high dimensional right censored data with some previously identified important predictors. A new model-free conditional feature screening approach, conditional correlation rank sure independence screening, has been proposed and investigated theoretically. The suggested conditional screening procedure has several desirable merits. First, it is model free, and thus robust to model misspecification. Second, it has the advantage of robustness of heavy-tailed distributions of the response and the presence of potential outliers in response. Third, it is naturally applicable to complete data when there is no censoring. Through simulation studies, we demonstrate that the proposed approach outperforms the CoxCS of Hong et al. under some circumstances. A real dataset is used to illustrate the usefulness of the proposed conditional screening method.  相似文献   

17.
Latent class models (LCMs) are used increasingly for addressing a broad variety of problems, including sparse modeling of multivariate and longitudinal data, model-based clustering, and flexible inferences on predictor effects. Typical frequentist LCMs require estimation of a single finite number of classes, which does not increase with the sample size, and have a well-known sensitivity to parametric assumptions on the distributions within a class. Bayesian nonparametric methods have been developed to allow an infinite number of classes in the general population, with the number represented in a sample increasing with sample size. In this article, we propose a new nonparametric Bayes model that allows predictors to flexibly impact the allocation to latent classes, while limiting sensitivity to parametric assumptions by allowing class-specific distributions to be unknown subject to a stochastic ordering constraint. An efficient MCMC algorithm is developed for posterior computation. The methods are validated using simulation studies and applied to the problem of ranking medical procedures in terms of the distribution of patient morbidity.  相似文献   

18.
Supersaturated designs are factorial designs in which the number of potential effects is greater than the run size. They are commonly used in screening experiments, with the aim of identifying the dominant active factors with low cost. However, an important research field, which is poorly developed, is the analysis of such designs with non-normal response. In this article, we develop a variable selection strategy, through the modification of the PageRank algorithm, which is commonly used in the Google search engine for ranking Webpages. The proposed method incorporates an appropriate information theoretical measure into this algorithm and as a result, it can be efficiently used for factor screening. A noteworthy advantage of this procedure is that it allows the use of supersaturated designs for analyzing discrete data and therefore a generalized linear model is assumed. As it is depicted via a thorough simulation study, in which the Type I and Type II error rates are computed for a wide range of underlying models and designs, the presented approach can be considered quite advantageous and effective.  相似文献   

19.
Summary.  Because highly correlated data arise from many scientific fields, we investigate parameter estimation in a semiparametric regression model with diverging number of predictors that are highly correlated. For this, we first develop a distribution-weighted least squares estimator that can recover directions in the central subspace, then use the distribution-weighted least squares estimator as a seed vector and project it onto a Krylov space by partial least squares to avoid computing the inverse of the covariance of predictors. Thus, distrbution-weighted partial least squares can handle the cases with high dimensional and highly correlated predictors. Furthermore, we also suggest an iterative algorithm for obtaining a better initial value before implementing partial least squares. For theoretical investigation, we obtain strong consistency and asymptotic normality when the dimension p of predictors is of convergence rate O { n 1/2/ log ( n )} and o ( n 1/3) respectively where n is the sample size. When there are no other constraints on the covariance of predictors, the rates n 1/2 and n 1/3 are optimal. We also propose a Bayesian information criterion type of criterion to estimate the dimension of the Krylov space in the partial least squares procedure. Illustrative examples with a real data set and comprehensive simulations demonstrate that the method is robust to non-ellipticity and works well even in 'small n –large p ' problems.  相似文献   

20.
It is quite a challenge to develop model‐free feature screening approaches for missing response problems because the existing standard missing data analysis methods cannot be applied directly to high dimensional case. This paper develops some novel methods by borrowing information of missingness indicators such that any feature screening procedures for ultrahigh‐dimensional covariates with full data can be applied to missing response case. The first method is the so‐called missing indicator imputation screening, which is developed by proving that the set of the active predictors of interest for the response is a subset of the active predictors for the product of the response and missingness indicator under some mild conditions. As an alternative, another method called Venn diagram‐based approach is also developed. The sure screening property is proven for both methods. It is shown that the complete case analysis can also keep the sure screening property of any feature screening approach with sure screening property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号