首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The asymptotically normal, regression-based LM integration test is adapted for panels with correlated units. The N different units may be integrated of different (fractional) orders under the null hypothesis. The paper first reviews conditions under which the test statistic is asymptotically (as T→∞) normal in a single unit. Then we adopt the framework of seemingly unrelated regression [SUR] for cross-correlated panels, and discuss a panel test statistic based on the feasible generalized least squares [GLS] estimator, which follows a χ 2(N) distribution. Third, a more powerful statistic is obtained by working under the assumption of equal deviations from the respective null in all units. Fourth, feasible GLS requires inversion of sample covariance matrices typically imposing T>N; in addition we discuss alternative covariance matrix estimators for T<N. The usefulness of our results is assessed in Monte Carlo experimentation.  相似文献   

2.
The goal of this paper is to introduce a partially adaptive estimator for the censored regression model based on an error structure described by a mixture of two normal distributions. The model we introduce is easily estimated by maximum likelihood using an EM algorithm adapted from the work of Bartolucci and Scaccia (Comput Stat Data Anal 48:821–834, 2005). A Monte Carlo study is conducted to compare the small sample properties of this estimator to the performance of some common alternative estimators of censored regression models including the usual tobit model, the CLAD estimator of Powell (J Econom 25:303–325, 1984), and the STLS estimator of Powell (Econometrica 54:1435–1460, 1986). In terms of RMSE, our partially adaptive estimator performed well. The partially adaptive estimator is applied to data on wife’s hours worked from Mroz (1987). In this application we find support for the partially adaptive estimator over the usual tobit model.  相似文献   

3.
Maclean et al. (1976) applied a specific Box-Cox transformation to test for mixtures of distributions against a single distribution. Their null hypothesis is that a sample of n observations is from a normal distribution with unknown mean and variance after a restricted Box-Cox transformation. The alternative is that the sample is from a mixture of two normal distributions, each with unknown mean and unknown, but equal, variance after another restricted Box-Cox transformation. We developed a computer program that calculated the maximum likelihood estimates (MLEs) and likelihood ratio test (LRT) statistic for the above. Our algorithm for the calculation of the MLEs of the unknown parameters used multiple starting points to protect against convergence to a local rather than global maximum. We then simulated the distribution of the LRT for samples drawn from a normal distribution and five Box-Cox transformations of a normal distribution. The null distribution appeared to be the same for the Box-Cox transformations studied and appeared to be distributed as a chi-square random variable for samples of 25 or more. The degrees of freedom parameter appeared to be a monotonically decreasing function of the sample size. The null distribution of this LRT appeared to converge to a chi-square distribution with 2.5 degrees of freedom. We estimated the critical values for the 0.10, 0.05, and 0.01 levels of significance.  相似文献   

4.
Summary.  We consider a finite mixture model with k components and a kernel distribution from a general one-parameter family. The problem of testing the hypothesis k =2 versus k 3 is studied. There has been no general statistical testing procedure for this problem. We propose a modified likelihood ratio statistic where under the null and the alternative hypotheses the estimates of the parameters are obtained from a modified likelihood function. It is shown that estimators of the support points are consistent. The asymptotic null distribution of the modified likelihood ratio test proposed is derived and found to be relatively simple and easily applied. Simulation studies for the asymptotic modified likelihood ratio test based on finite mixture models with normal, binomial and Poisson kernels suggest that the test proposed performs well. Simulation studies are also conducted for a bootstrap method with normal kernels. An example involving foetal movement data from a medical study illustrates the testing procedure.  相似文献   

5.
We define the mixture likelihood approach to clustering by discussing the sampling distribution of the likelihood ratio test of the null hypothesis that we have observed a sample of observations of a variable having the bivariate normal distribution versus the alternative that the variable has the bivariate normal mixture with unequal means and common within component covariance matrix. The empirical distribution of the likelihood ratio test indicates that convergence to the chi-squared distribution with 2 df is at best very slow, that the sample size should be 5000 or more for the chi-squared result to hold, and that for correlations between 0.1 and 0.9 there is little, if any, dependence of the null distribution on the correlation. Our simulation study suggests a heuristic function based on the gamma.  相似文献   

6.
Two tests are derived for the hypothesis that the coefficients of variation of k normal populations are equal. The k samples may be of unequal size. The first test is the likelihood ratio test with the usual X2-approximation. A simulation study shows that the small sample behaviour under the null hypothesis is unsatisfactory. An alternative test, based on the sample coefficients of variation, appears to have somewhat better properties.  相似文献   

7.
Testing for linearity in the context of Markov switching models is complicated because standard regularity conditions for likelihood based inference are violated. In particular, under the null hypothesis of linearity, some parameters are not identified and scores are identically zero. Thus, the asymptotic distribution of the relevant test statistic does not possess the standard χ 2-distribution. A bootstrap resampling scheme to approximate the distribution of the relevant test statistic under the null of linearity is proposed. The procedure is relatively easy to program and computation requirements are reasonable. The performance of the bootstrap-based test is investigated by means of Monte Carlo simulations. Results show that this test works well and outperforms the Hansen test and the Carrasco et al. test.  相似文献   

8.
We propose a method for detecting the zones where a variable irregularly sampled in the plane changes abruptly. Our general model is that under the null hypothesis the variable is the realisation of a stationary Gaussian process with constant expectation. The alternative is that the mean function presents abrupt changes. We define potential Zones of Abrupt Change (ZACs) by the points where the gradient, estimated under the null hypothesis, exceeds a determined threshold. We then design a global test to assess the global significance of the potential ZACs, an issue missing in all existing methods. The theory that links the threshold and the global level is based on asymptotic distributions of excursion sets of non-stationary χ 2 fields for which we provide new results. The method is evaluated by a simulation study and applied to a soil data set in the context of precision agriculture.  相似文献   

9.
Generalized variance is a measure of dispersion of multivariate data. Comparison of dispersion of multivariate data is one of the favorite issues for multivariate quality control, generalized homogeneity of multidimensional scatter, etc. In this article, the problem of testing equality of generalized variances of k multivariate normal populations by using the Bartlett's modified likelihood ratio test (BMLRT) is proposed. Simulations to compare the Type I error rate and power of the BMLRT and the likelihood ratio test (LRT) methods are performed. These simulations show that the BMLRT method has a better chi-square approximation under the null hypothesis. Finally, a practical example is given.  相似文献   

10.
Large-scale simultaneous hypothesis testing appears in many areas. A well-known inference method is to control the false discovery rate. One popular approach is to model the z-scores derived from the individual t-tests and then use this model to control the false discovery rate. We propose a heteroscedastic contaminated normal mixture to describe the distribution of z-scores and design an EM-test for testing homogeneity in this class of mixture models. The proposed EM-test can be used to investigate whether a collection of z-scores has arisen from a single normal distribution or whether a heteroscedastic contaminated normal mixture is more appropriate. We show that the EM-test statistic has a shifted mixture of chi-squared limiting distribution. Simulation results show that the proposed testing procedure has accurate type-I error and significantly larger power than its competitors under a variety of model specifications. A real-data example is analysed to exemplify the application of the proposed method.  相似文献   

11.
Likelihood ratio tests are considered for two testing situations; testing for the homogeneity of k normal means against the alternative restricted by a simple tree ordering trend and testing the null hypothesis that the means satisfy the trend against all alternatives. Exact expressions are given for the power functions for k = 3 and 4 and unequal sample sizes, both for the case of known and unknown population variances, and approximations are discussed for larger k. Also, Bartholomew’s conjectures concerning minimal and maximal powers are investigated for the case of equal and unequal sample sizes. The power formulas are used to compute powers for a numerical example.  相似文献   

12.
Two-sample comparison problems are often encountered in practical projects and have widely been studied in literature. Owing to practical demands, the research for this topic under special settings such as a semiparametric framework have also attracted great attentions. Zhou and Liang (Biometrika 92:271–282, 2005) proposed an empirical likelihood-based semi-parametric inference for the comparison of treatment effects in a two-sample problem with censored data. However, their approach is actually a pseudo-empirical likelihood and the method may not be fully efficient. In this study, we develop a new empirical likelihood-based inference under more general framework by using the hazard formulation of censored data for two sample semi-parametric hybrid models. We demonstrate that our empirical likelihood statistic converges to a standard chi-squared distribution under the null hypothesis. We further illustrate the use of the proposed test by testing the ROC curve with censored data, among others. Numerical performance of the proposed method is also examined.  相似文献   

13.
We develop an improved approximation to the asymptotic null distribution of the goodness-of-fit tests for panel observed multi-state Markov models (Aguirre-Hernandez and Farewell, Stat Med 21:1899–1911, 2002) and hidden Markov models (Titman and Sharples, Stat Med 27:2177–2195, 2008). By considering the joint distribution of the grouped observed transition counts and the maximum likelihood estimate of the parameter vector it is shown that the distribution can be expressed as a weighted sum of independent c21{\chi^2_1} random variables, where the weights are dependent on the true parameters. The performance of this approximation for finite sample sizes and where the weights are calculated using the maximum likelihood estimates of the parameters is considered through simulation. In the scenarios considered, the approximation performs well and is a substantial improvement over the simple χ 2 approximation.  相似文献   

14.
Testing for homogeneity in finite mixture models has been investigated by many researchers. The asymptotic null distribution of the likelihood ratio test (LRT) is very complex and difficult to use in practice. We propose a modified LRT for homogeneity in finite mixture models with a general parametric kernel distribution family. The modified LRT has a χ-type of null limiting distribution and is asymptotically most powerful under local alternatives. Simulations show that it performs better than competing tests. They also reveal that the limiting distribution with some adjustment can satisfactorily approximate the quantiles of the test statistic, even for moderate sample sizes.  相似文献   

15.
In this article we present a simple procedure to test for the null hypothesis of equality of two regression curves versus one-sided alternatives in a general nonparametric and heteroscedastic setup. The test is based on the comparison of the sample averages of the estimated residuals in each regression model under the null hypothesis. The test statistic has asymptotic normal distribution and can detect any local alternative of rate n-1/2. Some simulations and an application to a data set are included.  相似文献   

16.
The authors consider hidden Markov models (HMMs) whose latent process has m ≥ 2 states and whose state‐dependent distributions arise from a general one‐parameter family. They propose a test of the hypothesis m = 2. Their procedure is an extension to HMMs of the modified likelihood ratio statistic proposed by Chen, Chen & Kalbfleisch (2004) for testing two states in a finite mixture. The authors determine the asymptotic distribution of their test under the hypothesis m = 2 and investigate its finite‐sample properties in a simulation study. Their test is based on inference for the marginal mixture distribution of the HMM. In order to illustrate the additional difficulties due to the dependence structure of the HMM, they show how to test general regular hypotheses on the marginal mixture of HMMs via a quasi‐modified likelihood ratio. They also discuss two applications.  相似文献   

17.
In a likelihood-ratio test for a two-component Normal location mixture, the natural parametrisation degenerates to non-uniqueness under the null hypothesis. One consequence of this ambiguity is that the limiting distribution of the likelihood-ratio statistic is quite irregular, being of extreme-value type rather than chi-squared. Another irregular feature is that the likelihood-ratio statistic diverges to infinity, and so limit theory is nonstandard in this respect as well. These results, in a form applying directly to the likelihood-ratio statistic rather than to an approximating stochastic process, have recently been established by Liu and Shao (2004). While they address only properties under the null hypothesis, they hint that the power of the likelihood-ratio test may be less than in more conventional settings. In this paper we show that this is indeed the case. Using a system of local alternative hypotheses we quantify the extent to which power is reduced. We show that, in a large class of circumstances, the reduction in power can be appreciated in terms of inflation (by a log–log factor) of the displacement of the closest local alternative that can just be distinguished from the null hypothesis. However, in important respects the properties of power under local alternatives are significantly more complex than this, and exhibit two types of singularity. In particular, in two quite different respects, small changes in the local alternative, in the neighbourhood of a threshold, can dramatically alter power.  相似文献   

18.
The problems that arise when using the likelihood ratio test for the identification of a mixture distribution are well known: non-identifiability of the parameters and null hypothesis corresponding to a boundary point of the parameter space. In their approach to the problem of testing homogeneity against a mixture with two components, Ghosh and Sen took into account these specific problems. Under general assumptions, they obtained the asymptotic distribution of the likelihood ratio test statistic. However, their result requires a separation condition which is not completely satisfactory. We show that it is possible to remove this condition with assumptions which involve the second derivatives of the density only.  相似文献   

19.
We propose a more efficient version of the slice sampler for Dirichlet process mixture models described by Walker (Commun. Stat., Simul. Comput. 36:45–54, 2007). This new sampler allows for the fitting of infinite mixture models with a wide-range of prior specifications. To illustrate this flexibility we consider priors defined through infinite sequences of independent positive random variables. Two applications are considered: density estimation using mixture models and hazard function estimation. In each case we show how the slice efficient sampler can be applied to make inference in the models. In the mixture case, two submodels are studied in detail. The first one assumes that the positive random variables are Gamma distributed and the second assumes that they are inverse-Gaussian distributed. Both priors have two hyperparameters and we consider their effect on the prior distribution of the number of occupied clusters in a sample. Extensive computational comparisons with alternative “conditional” simulation techniques for mixture models using the standard Dirichlet process prior and our new priors are made. The properties of the new priors are illustrated on a density estimation problem.  相似文献   

20.
The normalized maximum likelihood (NML) is a recent penalized likelihood that has properties that justify defining the amount of discrimination information (DI) in the data supporting an alternative hypothesis over a null hypothesis as the logarithm of an NML ratio, namely, the alternative hypothesis NML divided by the null hypothesis NML. The resulting DI, like the Bayes factor but unlike the P‐value, measures the strength of evidence for an alternative hypothesis over a null hypothesis such that the probability of misleading evidence vanishes asymptotically under weak regularity conditions and such that evidence can support a simple null hypothesis. Instead of requiring a prior distribution, the DI satisfies a worst‐case minimax prediction criterion. Replacing a (possibly pseudo‐) likelihood function with its weighted counterpart extends the scope of the DI to models for which the unweighted NML is undefined. The likelihood weights leverage side information, either in data associated with comparisons other than the comparison at hand or in the parameter value of a simple null hypothesis. Two case studies, one involving multiple populations and the other involving multiple biological features, indicate that the DI is robust to the type of side information used when that information is assigned the weight of a single observation. Such robustness suggests that very little adjustment for multiple comparisons is warranted if the sample size is at least moderate. The Canadian Journal of Statistics 39: 610–631; 2011. © 2011 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号