首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A simple summary of a treatment effect is attractive, which is part of the explanation of the success of the Cox model when analysing time‐to‐event data since the relative risk measure is such a convenient summary measure. In practice, however, the Cox model may fail to give a reasonable fit, very often because of time‐changing treatment effect. The Aalen additive hazards model may be a good alternative as time‐changing effects are easily modelled within this model, but results are then evidently more complicated to communicate. In such situations, the odds of concordance measure (OC) is a convenient way of communicating results, and recently Martinussen & Pipper (2012) showed how a variant of the OC measure may be estimated based on the Aalen additive hazards model. In this study, we propose an estimator that should be preferred in observational studies as it always estimates the causal effect on the chosen scale, only assuming that there are no un‐measured confounders. The resulting estimator is shown to be consistent and asymptotically normal, and an estimator of its limiting variance is provided. Two real applications are provided.  相似文献   

3.
This paper studies the estimation in the proportional odds model based on randomly truncated data. The proposed estimators for the regression coefficients include a class of minimum distance estimators defined through weighted empirical odds function. We have investigated the asymptotic properties like the consistency and the limiting distribution of the proposed estimators under mild conditions. The finite sample properties were investigated through simulation study making comparison of some of the estimators in the class. We conclude with an illustration of our proposed method to a well-known AIDS data.  相似文献   

4.
In practice, it is not uncommon to encounter the situation that a discrete response is related to both a functional random variable and multiple real-value random variables whose impact on the response is nonlinear. In this paper, we consider the generalized partial functional linear additive models (GPFLAM) and present the estimation procedure. In GPFLAM, the nonparametric functions are approximated by polynomial splines and the infinite slope function is estimated based on the principal component basis function approximations. We obtain the estimator by maximizing the quasi-likelihood function. We investigate the finite sample properties of the estimation procedure via Monte Carlo simulation studies and illustrate our proposed model by a real data analysis.  相似文献   

5.
The additive hazards model is one of the most commonly used regression models in the analysis of failure time data and many methods have been developed for its inference in various situations. However, no established estimation procedure exists when there are covariates with missing values and the observed responses are interval-censored; both types of complications arise in various settings including demographic, epidemiological, financial, medical and sociological studies. To address this deficiency, we propose several inverse probability weight-based and reweighting-based estimation procedures for the situation where covariate values are missing at random. The resulting estimators of regression model parameters are shown to be consistent and asymptotically normal. The numerical results that we report from a simulation study suggest that the proposed methods work well in practical situations. An application to a childhood cancer survival study is provided. The Canadian Journal of Statistics 48: 499–517; 2020 © 2020 Statistical Society of Canada  相似文献   

6.
A new method for estimating a set of odds ratios under an order restriction based on estimating equations is proposed. The method is applied to those of the conditional maximum likelihood estimators and the Mantel-Haenszel estimators. The estimators derived from the conditional likelihood estimating equations are shown to maximize the conditional likelihoods. It is also seen that the restricted estimators converge almost surely to the respective odds ratios when the respective sample sizes become large regularly. The restricted estimators are compared with the unrestricted maximum likelihood estimators by a Monte Carlo simulation. The simulation studies show that the restricted estimates improve the mean squared errors remarkably, while the Mantel-Haenszel type estimates are competitive with the conditional maximum likelihood estimates, being slightly worse.  相似文献   

7.
The authors construct locally optimal designs for the proportional odds model for ordinal data. While they investigate the standard D‐optimal design, they also investigate optimality criteria for the simultaneous estimation of multiple quantiles, namely DA ‐optimality and the omnibus criterion. The design of experiments for the simultaneous estimation of multiple quantiles is important in both toxic and effective dose studies in medicine. As with c‐optimality in the binary response problem, the authors find that there are distinct phase changes when exploring extreme quantiles that require additional design points. The authors also investigate relative efficiencies of the criteria.  相似文献   

8.
In this paper, we introduce a partially linear single-index additive hazards model with current status data. Both the unknown link function of the single-index term and the cumulative baseline hazard function are approximated by B-splines under a monotonicity constraint on the latter. The sieve method is applied to estimate the nonparametric and parametric components simultaneously. We show that, when the nonparametric link function is an exact B-spline, the resultant estimator of regression parameter vector is asymptotically normal and achieves the semiparametric information bound and the rate of convergence of the estimator for the cumulative baseline hazard function is optimal. Simulation studies are presented to examine the finite sample performance of the proposed estimation method. For illustration, we apply the method to a clinical dataset with current status outcome.  相似文献   

9.
This paper discusses the goodness-of-fit test for the proportional odds model for K-sample interval-censored failure time data, which frequently occur in, for example, periodic follow-up survival studies. The proportional odds model has a feature that allows the ratio of two hazard functions to be monotonic and converge to one and provides an important tool for the modeling of survival data. To test the model, a procedure is proposed, which is a generalization of the method given in Dauxois and Kirmani [Dauxois JY, Kirmani SNUA (2003) Biometrika 90:913–922]. The asymptotic distribution of the procedure is established and its properties are evaluated by simulation studies  相似文献   

10.
Stratified regression models are commonly employed when study subjects may come from possibly different strata such as different medical centers, and for the situation, one common question of interest is to test the existence of the stratum effect. To address this, there exists some literature on the testing of the stratum effects under the framework of the proportional hazards model when one observes right-censored data or interval-censored data. In this paper, we consider the situation under the additive hazards model when one faces current status data, for which there does not seem to exist an established test procedure. The asymptotic distributions of the proposed test procedure are provided. Also a simulation study is performed to evaluate the performance of the proposed method and indicates that it works well for practical situations. The approach is applied to a set of real current status data from a tumorigenicity study.  相似文献   

11.
We consider estimation for the homoscedastic additive model for multiple regression. A recursion is proposed in Opsomer (1999), and independently by the authors, for obtaining the estimators that solve the normal equations given by Hastie and Tibshirani (1990). The recursion can be exploited to obtain the asymptotic bias and variance expressions of the estimators for any p > 2 (Opsomer 1999) using repeated application of Opsomer and Ruppert (1997). Opsomer and Ruppert (1997) provide asymptotic bias and variance for the estimators when p = 2. Opsomer (1999) also uses the recursion to provide sufficient conditions for convergence of the backfitting algorithm to a unique solution of the normal equations. However, since explicit expressions for the solution to the normal equations are not given, he states, “The lemma does not provide a practical way of evaluating the existence and uniqueness of the backfitting estimators … ”. In this paper, explicit expressions for the estimators are derived. The explicit solution requires inverses of n × n matrices to solve the np × np system of normal equations. These matrix inverses are feasible to implement for moderate sample sizes and can be used in place of the backfitting algorithm.  相似文献   

12.
In this paper, the estimation of average treatment effects is examined given that the propensity score is of a parametric form with some unknown parameters. Under the assumption that the treatment is ignorable given some observed characteristics, the MLEs for those unknown parameters in the probability assignment model have been achieved firstly and then three estimators have been defined by the inverse probability weighted, regression and imputation methods, respectively. All the estimators are shown asymptotically normal and more importantly, the substantial efficiency gains of the first two estimates have been obtained theoretically compared with the existing estimators in Hahn (1998) and Hirano et al. (2003), i.e., the inverse weighted probability estimator and the regression estimator have smaller asymptotic variances. Our simulation analysis verifies the theoretical results in terms of biases, SEs and MSEs.  相似文献   

13.
This paper studies estimation in the proportional odds model, with time-dependent covariates, based on right-censored data. The estimation procedure is an extension of the Yang and Prentice (J. Amer. Statist. Assoc. 94 (1999) 125) approach to the time-dependent covariate case. The proposed estimators include a class of minimum distance estimators defined through weighted empirical odds function. These estimators are shown to be strongly consistent and asymptotically normal, with variances that can be consistently estimated. It also contains a simulation study making comparison of some of the estimators in the class.  相似文献   

14.
In this paper, the dependence of transition probabilities on covariates and a test procedure for covariate dependent Markov models are examined. The nonparametric test for the role of waiting time proposed by Jones and Crowley [M. Jones, J. Crowley, Nonparametric tests of the Markov model for survival data Biometrika 79 (3) (1992) 513–522] has been extended here to transitions and reverse transitions. The limitation of the Jones and Crowley method is that it does not take account of other covariates that might have association with the probabilities of transition. A simple test procedure is proposed that can be employed for testing: (i) the significance of association between covariates and transition probabilities, and (ii) the impact of waiting time on the transition probabilities. The procedure is illustrated using panel data on hospitalization of the elderly population in the USA from the Health and Retirement Survey (HRS).  相似文献   

15.
It is essential to test the goodness of fit of the model before making inferences based on it. Multilevel modeling of ordinal categorical responses is not as developed as for continuous responses. Assessing model adequacy in terms of the goodness of fit with ordinal categorical responses is still being developed and no satisfactory tests are available so far. As a consequence of that, this study concentrates on developing such a goodness of fit test for Multilevel Proportional Odds models and to study the properties of the test.  相似文献   

16.
Abstract

We consider effect of additive covariate error on linear model in observational (radiation epidemiology) study for exposure risk. Additive dose error affects dose-response shape under general linear regression settings covering identity-link GLM type models and linear excess-relative-risk grouped-Poisson models. Under independent error, dose distribution that log of dose density is up to quadratic polynomial on an interval (the log-quadratic density condition), normal, exponential, and uniform distributions, is the condition for linear regression calibration. Violation of the condition can result low-dose-high-sensitivity model from linear no-threshold (LNT) model by the dose error. Power density is also considered. A published example is given.  相似文献   

17.
A new rank correlation index, which can be used to measure the extent of concordance or discordance between two rankings, is proposed. This index is based on Gini’s mean difference computed on the totals ranks corresponding to each unit and it turns out to be a special case of a more general measure of the agreement of m rankings. The proposed index can be used in a test for the independence of two criteria used to rank the units of a sample, against their concordance/discordance. It can then be regarded as a competitor of other classical methods, such as Kendall’s tau. The exact distribution of the proposed test-statistic under the null hypothesis of independence is studied and its expectation and variance are determined; moreover, the asymptotic distribution of the test-statistic is derived. Finally, the implementation of the proposed test and its performance are discussed. Both the authors contributed equally to this work; however, the actual writing of the paper was as follows: Sects. 2 and 3 are due to C. G. Borroni, Sects. 1 and 4 are due to M. Zenga.  相似文献   

18.
19.
ABSTRACT

Gandy and Jensen (2005 Gandy, A., Jensen, U. (2005). On goodness-of-fit tests for Aalen's additive risk model. Scan. J. Stat. 32:425445.[Crossref], [Web of Science ®] [Google Scholar]) proposed goodness-of-fit tests for Aalen's additive risk model. In this article, we demonstrate that the approach of Gandy and Jensen (2005 Gandy, A., Jensen, U. (2005). On goodness-of-fit tests for Aalen's additive risk model. Scan. J. Stat. 32:425445.[Crossref], [Web of Science ®] [Google Scholar]) can be applied to left-truncated right-censored (LTRC) data and doubly censored data. A simulation study is conducted to investigate the performance of the proposed tests. The proposed tests are illustrated using heart transplant data.  相似文献   

20.
Due to significant progress in cancer treatments and management in survival studies involving time to relapse (or death), we often need survival models with cured fraction to account for the subjects enjoying prolonged survival. Our article presents a new proportional odds survival models with a cured fraction using a special hierarchical structure of the latent factors activating cure. This new model has same important differences with classical proportional odds survival models and existing cure-rate survival models. We demonstrate the implementation of Bayesian data analysis using our model with data from the SEER (Surveillance Epidemiology and End Results) database of the National Cancer Institute. Particularly aimed at survival data with cured fraction, we present a novel Bayes method for model comparisons and assessments, and demonstrate our new tool’s superior performance and advantages over competing tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号