首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Classical omnibus and more recent methods are adapted to panel data situations in order to jointly test for normality of the error components. The test statistics incorporate either the empirical distribution function or the empirical characteristic function, these functions resulting from estimation of the fixed and random components. Monte Carlo results show that the new procedure based on the empirical characteristic function compares favorably with classical methods.  相似文献   

2.
Panel data can contain the following four effects: individual effects, age effects, period effects, and cohort effects. The individual effects can arise from observed households or firms and are usually modelled as fixed effects or random effects in panel data analysis. The cohort effects can arise from birth years of the individuals. In order to overcome the identification problem in a linear relationship such as age?=?period???cohort, the principal-component-based generalized-least-squares approach is proposed. Simulation results suggest the efficacy of the proposed approach. Empirical results pertaining to Japanese firms suggest that cohort effects are larger than individual effects in half the data sets and that firm life cycles are not caused by age effects but by cohort effects.  相似文献   

3.
In this paper we introduce a sequential seasonal unit root testing approach which explicitly addresses its application to high frequency data. The main idea is to see which unit roots at higher frequency data can also be found in temporally aggregated data. We illustrate our procedure to the analysis of monthly data, and we find, upon analysing the aggregated quarterly data, that a smaller amount of test statistics can sometimes be considered. Monte Carlo simulation and empirical illustrations emphasize the practical relevance of our method.  相似文献   

4.
This article considers first-order autoregressive panel model that is a simple model for dynamic panel data (DPD) models. The generalized method of moments (GMM) gives efficient estimators for these models. This efficiency is affected by the choice of the weighting matrix that has been used in GMM estimation. The non-optimal weighting matrices have been used in the conventional GMM estimators. This led to a loss of efficiency. Therefore, we present new GMM estimators based on optimal or suboptimal weighting matrices. Monte Carlo study indicates that the bias and efficiency of the new estimators are more reliable than the conventional estimators.  相似文献   

5.
This paper proposes various double unit root tests for cross-sectionally dependent panel data. The cross-sectional correlation is handled by the projection method [P.C.B. Phillips and D. Sul, Dynamic panel estimation and homogeneity testing under cross section dependence, Econom. J. 6 (2003), pp. 217–259; H.R. Moon and B. Perron, Testing for a unit root in panels with dynamic factors, J. Econom. 122 (2004), pp. 81–126] or the subtraction method [J. Bai and S. Ng, A PANIC attack on unit roots and cointegration, Econometrica 72 (2004), pp. 1127–1177]. Pooling or averaging is applied to combine results from different panel units. Also, to estimate autoregressive parameters the ordinary least squares estimation [D.P. Hasza and W.A. Fuller, Estimation for autoregressive processes with unit roots, Ann. Stat. 7 (1979), pp. 1106–1120] or the symmetric estimation [D.L. Sen and D.A. Dickey, Symmetric test for second differencing in univariate time series, J. Bus. Econ. Stat. 5 (1987), pp. 463–473] are used, and to adjust mean functions the ordinary mean adjustment or the recursive mean adjustment are used. Combinations of different methods in defactoring to eliminate the cross-sectional dependency, integrating results from panel units, estimating the parameters, and adjusting mean functions yields various available tests for double unit roots in panel data. Simple asymptotic distributions of the proposed test statistics are derived, which can be used to find critical values of the test statistics.

We perform a Monte Carlo experiment to compare the performance of these tests and to suggest optimal tests for a given panel data. Application of the proposed tests to a real data, the yearly export panel data sets of several Latin–American countries for the past 50 years, illustrates the usefulness of the proposed tests for panel data, in that they reveal stronger evidence of double unit roots than the componentwise double unit root tests of Hasza and Fuller [Estimation for autoregressive processes with unit roots, Ann. Stat. 7 (1979), pp. 1106–1120] or Sen and Dickey [Symmetric test for second differencing in univariate time series, J. Bus. Econ. Stat. 5 (1987), pp. 463–473].  相似文献   


6.
This paper considers the estimation of Cobb-Douglas production functions using panel data covering a large sample of companies observed for a small number of time periods. GMM estimatorshave been found to produce large finite-sample biases when using the standard first-differenced estimator. These biases can be dramatically reduced by exploiting reasonable stationarity restrictions on the initial conditions process. Using data for a panel of R&Dperforming US manufacturing companies we find that the additional instruments used in our extended GMM estimator yield much more reasonable parameter estimates.  相似文献   

7.
This paper considers the estimation of Cobb-Douglas production functions using panel data covering a large sample of companies observed for a small number of time periods. GMM estimatorshave been found to produce large finite-sample biases when using the standard first-differenced estimator. These biases can be dramatically reduced by exploiting reasonable stationarity restrictions on the initial conditions process. Using data for a panel of R&Dperforming US manufacturing companies we find that the additional instruments used in our extended GMM estimator yield much more reasonable parameter estimates.  相似文献   

8.
This paper addresses the problem of testing for the presence of unit autoregressive roots in seasonal time series with negatively correlated moving average components. For such cases, many of the commonly used tests are known to have exact sizes much higher than their nominal significance level. We propose modifications of available test procedures that are based on suitably prewhitened data and feasible generalized least squares estimators. Monte Carlo experiments show that such modifications are successful in reducing size distortions in samples of moderate size.  相似文献   

9.
Expectile regression is a topic which became popular in the last years. It includes ordinary mean regression as special case but is more general as it offers the possibility to also model non-central parts of a distribution. Semi-parametric expectile models have recently been developed and it is easy to perform flexible expectile estimation with modern software like R. We extend the model class by allowing for panel observations, i.e. clustered data with repeated measurements taken at the same individual. A random (individual) effect is incorporated in the model which accounts for the dependence structure in the data. We fit expectile sheets, meaning that not a single expectile is estimated but a whole range of expectiles is estimated simultaneously. The presented model allows for multiple covariates, where a semi-parametric approach with penalized splines is pursued to fit smooth expectile curves. We apply our methods to panel data from the German Socio-Economic Panel.  相似文献   

10.
Tests for unit roots in panel data have become very popular. Two attractive features of panel data unit root tests are the increased power compared to time-series tests, and the often well-behaved limiting distributions of the tests. In this paper we apply Monte Carlo simulations to investigate how well the normal approximation works for a heterogeneous panel data unit root test when there are only a few cross sections in the sample. We find that the normal approximation, which should be valid for large numbers of cross-sectional units, works well, at conventional significance levels, even when the number of cross sections is as small as two. This finding is valuable for the applied researcher since critical values will be easy to obtain and p-values will be readily available.  相似文献   

11.
We propose tests for parameter constancy in the time series direction in panel data models. We construct a locally best invariant test based on Tanaka [Time series analysis: nonstationary and noninvertible distribution theory. New York: Wiley; 1996] and an asymptotically point optimal test based on Elliott and Müller [Efficient tests for general persistent time variation in regression coefficients. Rev Econ Stud. 2006;73:907–940]. We derive the limiting distributions of the test statistics as T→∞ while N is fixed, and calculate the critical values by applying numerical integration and response surface regression. Simulation results show that the proposed tests perform well if we apply them appropriately.  相似文献   

12.
The panel variant of the KPSS tests developed by Hadri [Hadri, K., 2000, Testing for stationarity in heterogeneous panels. Econometrics Journal, 3, 148–161] for the null of stationarity suffers from size distortions in the presence of cross-section dependence. However, applying the bootstrap methodology, we find that these tests are approximately correctly sized.  相似文献   

13.
This paper considers testing for cross-sectional dependence in a panel factor model. Based on the model considered by Bai (Econometrica 71: 135–171, 2003), we investigate the use of a simple $F$ test for testing for cross-sectional dependence when the factor may be known or unknown. The limiting distributions of these $F$ test statistics are derived when the cross-sectional dimension and the time-series dimension are both large. The main contribution of this paper is to propose a wild bootstrap $F$  test which is shown to be consistent and which performs well in Monte Carlo simulations especially when the factor is unknown.  相似文献   

14.
This article shows a test for the spurious regression problem in a panel data model with a growing individual number and time series length. In the estimation, tapers are used and the integrated order for the remainder disturbance is extended to a real number; at the same time, the spurious regression problem can be detected without prior knowledge. Through Monte Carlo experiments, we examine the consistent estimators by various sizes of time length and individual number, in which the remainder disturbance is assumed to be either stationary or non-stationary. In addition, the asymptotic normality properties are discussed with a quasi log-likelihood function. From the power tests we can see that the estimators are quite successful and powerful.  相似文献   

15.
Lifetime Data Analysis - Panel count data commonly arise in epidemiological, social science, and medical studies, in which subjects have repeated measurements on the recurrent events of interest at...  相似文献   

16.
In this contribution a nonparametric estimator for the hazard function will be presented for time-discrete survival analysis. The estimator is derived from a likelihood function based upon time-discrete counting processes. With martingale techniques asymptotic properties of the estimator of the cumulative hazard function are shown. Since we consider a nonparametric approach no exploratory variables are considered in the empirical example. For analyzing the remigrant behavior of different foreign nations (Italy, Yugoslavia, Greece, Spain and Turkey) the Socio-Economic Panel (SOEP) is used as a data basis. The estimations are carried out with a module of PRODISA, a program package developed for the analysis of time-discrete duration and panel data for the nonparametric and (semi)parametric case.  相似文献   

17.
Panel studies are statistical studies in which two or more variables are observed for two or more subjects at two or more points In time. Cross- lagged panel studies are those studies in which the variables are continuous and divide naturally into two effects or impacts of each set of variables on the other. If a regression approach is taken5 a regression structure Is formulated for the cross-lagged models This structure may assume that the regression parameters are homogeneous across waves and across subpopulations. Under such assumptions the methods of multivariate regression analysis can be adapted to make inferences about the parameters. These inferences are limited to the degree that homogeneity of the parameters Is 'supported b}T the data. We consider the problem of testing the hypotheses of homogeneity and consider the problem of making statistical inferences about the cross-effects should there be evidence against one of the homogeneity assumptions. We demonstrate the methods developed by applying then to two panel data sets.  相似文献   

18.
In this paper, we introduce a test for uniformity and use it as the second stage of an exact goodness-of-fit test of exponentiality. By simulation, the powers of the proposed test under various alternatives are compared with exponentiality test based on Kullback–Leibler information proposed by Ebrahimi et al. [N. Ebrahimi, M. Habibullah, and E.S. Soofi, Testing exponentiality based on Kullback–Leiber information, J. R. Statist. Soc. Ser. B 54 (1992), pp. 739–748]. The results are impressive, i.e. the proposed test has higher power than the test based on entropy.  相似文献   

19.
This article develops a statistic for testing the null of a linear unit root process against the alternative of a stationary exponential smooth transition autoregressive model. The asymptotic distribution of the test is shown to be nonstandard but nuisance parameter-free and hence critical values are obtained by simulations. Simulations show that the proposed statistic has considerable power under various data generating scenarios. Applications to real exchange rates also illustrate the ability of our test to reject null of unit root when some of the alternative tests do not.  相似文献   

20.
The nonlinear unit root test of Kapetanios, Shin, and Snell (2003 Kapetanios, G., Shin, Y., Snell, A. (2003). Testing for a unit root in the nonlinear STAR framework. Journal of Econometrics 112:359379.[Crossref], [Web of Science ®] [Google Scholar]) (KSS) has attracted much recent attention. However, the KSS test relies on the ordinary least squares (OLS) estimator, which is not robust to a heavy-tailed distribution and, in practice, the test suffers from a large power loss. This study develops three kinds of quantile nonlinear unit root tests: the quantile t-ratio test; the quantile Kolmogorov–Smirnov test; and the quantile Cramer–von Mises test. A Monte Carlo simulation shows that these tests have significantly better power when an innovation follows a non-normal distribution. In addition, the quantile t-ratio test can reveal the heterogeneity of the asymmetric dynamics in a time series. In our empirical studies, we investigate the unit root properties of U.S. macroeconomic time series and the real effective exchange rates for 61 countries. The results show that our proposed tests reject the unit roots more often, indicating that the series are likely to be asymmetric nonlinear reverting processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号