首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
A randomized trial allows estimation of the causal effect of an intervention compared to a control in the overall population and in subpopulations defined by baseline characteristics. Often, however, clinical questions also arise regarding the treatment effect in subpopulations of patients, which would experience clinical or disease related events post-randomization. Events that occur after treatment initiation and potentially affect the interpretation or the existence of the measurements are called intercurrent events in the ICH E9(R1) guideline. If the intercurrent event is a consequence of treatment, randomization alone is no longer sufficient to meaningfully estimate the treatment effect. Analyses comparing the subgroups of patients without the intercurrent events for intervention and control will not estimate a causal effect. This is well known, but post-hoc analyses of this kind are commonly performed in drug development. An alternative approach is the principal stratum strategy, which classifies subjects according to their potential occurrence of an intercurrent event on both study arms. We illustrate with examples that questions formulated through principal strata occur naturally in drug development and argue that approaching these questions with the ICH E9(R1) estimand framework has the potential to lead to more transparent assumptions as well as more adequate analyses and conclusions. In addition, we provide an overview of assumptions required for estimation of effects in principal strata. Most of these assumptions are unverifiable and should hence be based on solid scientific understanding. Sensitivity analyses are needed to assess robustness of conclusions.  相似文献   

2.
Summary.  Clinical trials of micronutrient supplementation are aimed at reducing the risk of infant mortality by increasing birth weight. Because infant mortality is greatest among the low birth weight (LBW) infants (2500 g or under), an effective intervention increases the birth weight among the smallest babies. The paper defines population and counterfactual parameters for estimating the treatment effects on birth weight and on survival as functions of the percentiles of the birth weight distribution. We use a Bayesian approach with data augmentation to approximate the posterior distributions of the parameters, taking into account uncertainty that is associated with the imputation of the counterfactuals. This approach is particularly suitable for exploring the sensitivity of the results to unverifiable modelling assumptions and other prior beliefs. We estimate that the average causal effect of the treatment on birth weight is 72 g (95% posterior regions 33–110 g) and that this causal effect is largest among the LBW infants. Posterior inferences about average causal effects of the treatment on birth weight are robust to modelling assumptions. However, inferences about causal effects for babies at the tails of the birth weight distribution can be highly sensitive to the unverifiable assumption about the correl-ation between the observed and the counterfactuals birth weights. Among the LBW infants who have a large causal effect of the treatment on birth weight, we estimate that a baby receiving the treatment has 5% less chance of death than if the same baby had received the control. Among the LBW infants, we found weak evidence supporting an additional beneficial effect of the treatment on mortality independent of birth weight.  相似文献   

3.
Data analysis for randomized trials including multi-treatment arms is often complicated by subjects who do not comply with their treatment assignment. We discuss here methods of estimating treatment efficacy for randomized trials involving multi-treatment arms subject to non-compliance. One treatment effect of interest in the presence of non-compliance is the complier average causal effect (CACE) (Angrist et al. 1996), which is defined as the treatment effect for subjects who would comply regardless of the assigned treatment. Following the idea of principal stratification (Frangakis & Rubin 2002), we define principal compliance (Little et al. 2009) in trials with three treatment arms, extend CACE and define causal estimands of interest in this setting. In addition, we discuss structural assumptions needed for estimation of causal effects and the identifiability problem inherent in this setting from both a Bayesian and a classical statistical perspective. We propose a likelihood-based framework that models potential outcomes in this setting and a Bayes procedure for statistical inference. We compare our method with a method of moments approach proposed by Cheng & Small (2006) using a hypothetical data set, and further illustrate our approach with an application to a behavioral intervention study (Janevic et al. 2003).  相似文献   

4.
《统计学通讯:理论与方法》2012,41(16-17):3150-3161
We consider a new approach to deal with non ignorable non response on an outcome variable, in a causal inference framework. Assuming that a binary instrumental variable for non response is available, we provide a likelihood-based approach to identify and estimate heterogeneous causal effects of a binary treatment on specific latent subgroups of units, named principal strata, defined by the non response behavior under each level of the treatment and of the instrument. We show that, within each stratum, non response is ignorable and respondents can be properly compared by treatment status. In order to assess our method and its robustness when the usually invoked assumptions are relaxed or misspecified, we simulate data to resemble a real experiment conducted on a panel survey which compares different methods of reducing panel attrition.  相似文献   

5.
Longitudinal clinical trials with long follow-up periods almost invariably suffer from a loss to follow-up and non-compliance with the assigned therapy. An example is protocol 128 of the AIDS Clinical Trials Group, a 5-year equivalency trial comparing reduced dose zidovudine with the standard dose for treatment of paediatric acquired immune deficiency syndrome patients. This study compared responses to treatment by using both clinical and cognitive outcomes. The cognitive outcomes are of particular interest because the effects of human immunodeficiency virus infection of the central nervous system can be more acute in children than in adults. We formulate and apply a Bayesian hierarchical model to estimate both the intent-to-treat effect and the average causal effect of reducing the prescribed dose of zidovudine by 50%. The intent-to-treat effect quantifies the causal effect of assigning the lower dose, whereas the average causal effect represents the causal effect of actually taking the lower dose. We adopt a potential outcomes framework where, for each individual, we assume the existence of a different potential outcomes process at each level of time spent on treatment. The joint distribution of the potential outcomes and the time spent on assigned treatment is formulated using a hierarchical model: the potential outcomes distribution is given at the first level, and dependence between the outcomes and time on treatment is specified at the second level by linking the time on treatment to subject-specific effects that characterize the potential outcomes processes. Several distributional and structural assumptions are used to identify the model from observed data, and these are described in detail. A detailed analysis of AIDS Clinical Trials Group protocol 128 is given; inference about both the intent-to-treat effect and average causal effect indicate a high probability of dose equivalence with respect to cognitive functioning.  相似文献   

6.
The causal effect of a treatment is estimated at different levels of treatment compliance, in a placebo-controlled trial on the reduction of blood pressure. The structural nested mean model makes no direct assumptions on selected treatment compliance levels and placebo prognosis but relies on the randomization assumption and a parametric form for causal effects. It can be seen as a regression model for unpaired data, where pre- and post-randomization covariables are treated differently. The causal parameters are found as solutions to estimating equations involving estimated placebo response and treatment compliance based on base-line covariates for all subjects. Our example considers a linear effect of the percentage of prescribed dose taken on achieved diastolic blood pressure reduction. We propose an exploration of structural model checks. In the example, this reveals an interaction between the causal effect of active dose taken and the base-line body weight of the patient.  相似文献   

7.
Patients often discontinue from a clinical trial because their health condition is not improving or they cannot tolerate the assigned treatment. Consequently, the observed clinical outcomes in the trial are likely better on average than if every patient had completed the trial. If these differences between trial completers and non-completers cannot be explained by the observed data, then the study outcomes are missing not at random (MNAR). One way to overcome this problem—the trimmed means approach for missing data due to study discontinuation—sets missing values as the worst observed outcome and then trims away a fraction of the distribution from each treatment arm before calculating differences in treatment efficacy (Permutt T, Li F. Trimmed means for symptom trials with dropouts. Pharm Stat. 2017;16(1):20–28). In this paper, we derive sufficient and necessary conditions for when this approach can identify the average population treatment effect. Simulation studies show the trimmed means approach's ability to effectively estimate treatment efficacy when data are MNAR and missingness due to study discontinuation is strongly associated with an unfavorable outcome, but trimmed means fail when data are missing at random. If the reasons for study discontinuation in a clinical trial are known, analysts can improve estimates with a combination of multiple imputation and the trimmed means approach when the assumptions of each hold. We compare the methodology to existing approaches using data from a clinical trial for chronic pain. An R package trim implements the method. When the assumptions are justifiable, using trimmed means can help identify treatment effects notwithstanding MNAR data.  相似文献   

8.
Consider a randomized trial in which time to the occurrence of a particular disease, say pneumocystis pneumonia in an AIDS trial or breast cancer in a mammographic screening trial, is the failure time of primary interest. Suppose that time to disease is subject to informative censoring by the minimum of time to death, loss to and end of follow-up. In such a trial, the censoring time is observed for all study subjects, including failures. In the presence of informative censoring, it is not possible to consistently estimate the effect of treatment on time to disease without imposing additional non-identifiable assumptions. The goals of this paper are to specify two non-identifiable assumptions that allow one to test for and estimate an effect of treatment on time to disease in the presence of informative censoring. In a companion paper (Robins, 1995), we provide consistent and reasonably efficient semiparametric estimators for the treatment effect under these assumptions. In this paper we largely restrict attention to testing. We propose tests that, like standard weighted-log-rank tests, are asymptotically distribution-free -level tests under the null hypothesis of no causal effect of treatment on time to disease whenever the censoring and failure distributions are conditionally independent given treatment arm. However, our tests remain asymptotically distribution-free -level tests in the presence of informative censoring provided either of our assumptions are true. In contrast, a weighted log-rank test will be an -level test in the presence of informative censoring only if (1) one of our two non-identifiable assumptions hold, and (2) the distribution of time to censoring is the same in the two treatment arms. We also extend our methods to studies of the effect of a treatment on the evolution over time of the mean of a repeated measures outcome, such as CD-4 count.  相似文献   

9.
In observational studies, the overall aim when fitting a model for the propensity score is to reduce bias for an estimator of the causal effect. To make the assumption of an unconfounded treatment plausible researchers might include many, possibly correlated, covariates in the propensity score model. In this paper, we study how the asymptotic efficiency of matching and inverse probability weighting estimators for average causal effects change when the covariates are correlated. We investigate the case with multivariate normal covariates, a logistic model for the propensity score and linear models for the potential outcomes and show results under different model assumptions. We show that the correlation can both increase and decrease the large sample variances of the estimators, and that the correlation affects the asymptotic efficiency of the estimators differently, both with regard to direction and magnitude. Moreover, the strength of the confounding towards the outcome and the treatment plays an important role.  相似文献   

10.
11.
Permutation tests are often used to analyze data since they may not require one to make assumptions regarding the form of the distribution to have a random and independent sample selection. We initially considered a permutation test to assess the treatment effect on computed tomography lesion volume in the National Institute of Neurological Disorders and Stroke (NINDS) t-PA Stroke Trial, which has highly skewed data. However, we encountered difficulties in summarizing the permutation test results on the lesion volume. In this paper, we discuss some aspects of permutation tests and illustrate our findings. This experience with the NINDS t-PA Stroke Trial data emphasizes that permutation tests are useful for clinical trials and can be used to validate assumptions of an observed test statistic. The permutation test places fewer restrictions on the underlying distribution but is not always distribution-free or an exact test, especially for ill-behaved data. Quasi-likelihood estimation using the generalized estimating equation (GEE) approach on transformed data seems to be a good choice for analyzing CT lesion data, based on both its corresponding permutation test and its clinical interpretation.  相似文献   

12.
Many assumptions, including assumptions regarding treatment effects, are made at the design stage of a clinical trial for power and sample size calculations. It is desirable to check these assumptions during the trial by using blinded data. Methods for sample size re‐estimation based on blinded data analyses have been proposed for normal and binary endpoints. However, there is a debate that no reliable estimate of the treatment effect can be obtained in a typical clinical trial situation. In this paper, we consider the case of a survival endpoint and investigate the feasibility of estimating the treatment effect in an ongoing trial without unblinding. We incorporate information of a surrogate endpoint and investigate three estimation procedures, including a classification method and two expectation–maximization (EM) algorithms. Simulations and a clinical trial example are used to assess the performance of the procedures. Our studies show that the expectation–maximization algorithms highly depend on the initial estimates of the model parameters. Despite utilization of a surrogate endpoint, all three methods have large variations in the treatment effect estimates and hence fail to provide a precise conclusion about the treatment effect. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
For binary experimental data, we discuss randomization‐based inferential procedures that do not need to invoke any modeling assumptions. In addition to the classical method of moments, we also introduce model‐free likelihood and Bayesian methods based solely on the physical randomization without any hypothetical super population assumptions about the potential outcomes. These estimators have some properties superior to moment‐based ones such as only giving estimates in regions of feasible support. Due to the lack of identification of the causal model, we also propose a sensitivity analysis approach that allows for the characterization of the impact of the association between the potential outcomes on statistical inference.  相似文献   

14.
纪园园等 《统计研究》2020,37(9):106-119
现有文献在利用处理效应模型评估政策时,模型中的假设条件局限性大多较强,在实际应用中很难验证,且一旦这些假设错误,就会引起参数估计的不一致。本文首先在非参数框架下提出了一种关于处理效应模型的半参数估计方法,其既不对模型中的函数形式做任何假定,也允许误差项的联合分布是广义异方差形式,从而大大减少因模型误设而引起的估计偏误。考虑到处理效应的内生性问题,提出了一个两步估计量。第一步关于选择方程进行非参数估计;第二步在结果方程中,利用工具变量法估计平均处理效应。其次,对估计量的大样本性质进行分析,表明了估计量的一致性和渐近正态性质。再次,通过蒙特卡罗模拟与已有估计方法进行比较,结果表明本文的方法具有较强的稳健性。最后,本文将该方法应用于研究高新技术企业认证政策对企业盈利能力影响,研究发现该政策提升了高新技术企业的盈利能力,并且相比于国有企业,该政策对民营企业促进效应更大。  相似文献   

15.
ABSTRACT

In this article, causal inference in randomized studies with recurrent events data and all-or-none compliance is considered. We use the counting process to analyze the recurrent events data and propose a causal proportional intensity model. The maximum likelihood approach is adopted to estimate the parameters of the proposed causal model. To overcome the computational difficulties created by the mixture structure of the problem, we develop an expectation-maximization (EM) algorithm. The resulting estimators are shown to be consistent and asymptotically normal. We further estimate the complier average causal effect (CACE), which is defined as the difference of the average numbers of recurrence between treatment and control groups within the complier class. The corresponding inferential procedures are established. Some simulation studies are conducted to assess the finite sample performance of the proposed approach.  相似文献   

16.
Given data sampled from a number of variables, one is often interested in the underlying causal relationships in the form of a directed acyclic graph. In the general case, without interventions on some of the variables it is only possible to identify the graph up to its Markov equivalence class. However, in some situations one can find the true causal graph just from observational data, for example, in structural equation models with additive noise and nonlinear edge functions. Most current methods for achieving this rely on nonparametric independence tests. One of the problems there is that the null hypothesis is independence, which is what one would like to get evidence for. We take a different approach in our work by using a penalized likelihood as a score for model selection. This is practically feasible in many settings and has the advantage of yielding a natural ranking of the candidate models. When making smoothness assumptions on the probability density space, we prove consistency of the penalized maximum likelihood estimator. We also present empirical results for simulated scenarios and real two-dimensional data sets (cause–effect pairs) where we obtain similar results as other state-of-the-art methods.  相似文献   

17.
We combine two approaches to causal reasoning. Granger causality, on the one hand, is popular in fields like econometrics, where randomised experiments are not very common. Instead information about the dynamic development of a system is explicitly modelled and used to define potentially causal relations. On the other hand, the notion of causality as effect of interventions is predominant in fields like medical statistics or computer science. In this paper, we consider the effect of external, possibly multiple and sequential, interventions in a system of multivariate time series, the Granger causal structure of which is taken to be known. We address the following questions: under what assumptions about the system and the interventions does Granger causality inform us about the effectiveness of interventions, and when does the possibly smaller system of observable times series allow us to estimate this effect? For the latter we derive criteria that can be checked graphically and are in the same spirit as Pearl’s back-door and front-door criteria (Pearl 1995).  相似文献   

18.
Motivated by a potential-outcomes perspective, the idea of principal stratification has been widely recognized for its relevance in settings susceptible to posttreatment selection bias such as randomized clinical trials where treatment received can differ from treatment assigned. In one such setting, we address subtleties involved in inference for causal effects when using a key covariate to predict membership in latent principal strata. We show that when treatment received can differ from treatment assigned in both study arms, incorporating a stratum-predictive covariate can make estimates of the "complier average causal effect" (CACE) derive from observations in the two treatment arms with different covariate distributions. Adopting a Bayesian perspective and using Markov chain Monte Carlo for computation, we develop posterior checks that characterize the extent to which incorporating the pretreatment covariate endangers estimation of the CACE. We apply the method to analyze a clinical trial comparing two treatments for jaw fractures in which the study protocol allowed surgeons to overrule both possible randomized treatment assignments based on their clinical judgment and the data contained a key covariate (injury severity) predictive of treatment received.  相似文献   

19.
The trimmed mean is a method of dealing with patient dropout in clinical trials that considers early discontinuation of treatment a bad outcome rather than leading to missing data. The present investigation is the first comprehensive assessment of the approach across a broad set of simulated clinical trial scenarios. In the trimmed mean approach, all patients who discontinue treatment prior to the primary endpoint are excluded from analysis by trimming an equal percentage of bad outcomes from each treatment arm. The untrimmed values are used to calculated means or mean changes. An explicit intent of trimming is to favor the group with lower dropout because having more completers is a beneficial effect of the drug, or conversely, higher dropout is a bad effect. In the simulation study, difference between treatments estimated from trimmed means was greater than the corresponding effects estimated from untrimmed means when dropout favored the experimental group, and vice versa. The trimmed mean estimates a unique estimand. Therefore, comparisons with other methods are difficult to interpret and the utility of the trimmed mean hinges on the reasonableness of its assumptions: dropout is an equally bad outcome in all patients, and adherence decisions in the trial are sufficiently similar to clinical practice in order to generalize the results. Trimming might be applicable to other inter‐current events such as switching to or adding rescue medicine. Given the well‐known biases in some methods that estimate effectiveness, such as baseline observation carried forward and non‐responder imputation, the trimmed mean may be a useful alternative when its assumptions are justifiable.  相似文献   

20.
The last decade saw enormous progress in the development of causal inference tools to account for noncompliance in randomized clinical trials. With survival outcomes, structural accelerated failure time (SAFT) models enable causal estimation of effects of observed treatments without making direct assumptions on the compliance selection mechanism. The traditional proportional hazards model has however rarely been used for causal inference. The estimator proposed by Loeys and Goetghebeur (2003, Biometrics vol. 59 pp. 100–105) is limited to the setting of all or nothing exposure. In this paper, we propose an estimation procedure for more general causal proportional hazards models linking the distribution of potential treatment-free survival times to the distribution of observed survival times via observed (time-constant) exposures. Specifically, we first build models for observed exposure-specific survival times. Next, using the proposed causal proportional hazards model, the exposure-specific survival distributions are backtransformed to their treatment-free counterparts, to obtain – after proper mixing – the unconditional treatment-free survival distribution. Estimation of the parameter(s) in the causal model is then based on minimizing a test statistic for equality in backtransformed survival distributions between randomized arms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号