首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
Imputation is a much used method for handling missing data. It is appealing as it separates the missing data part of the analysis, which is handled by imputation, and the estimation part, which is handled by complete data methods. Most imputation methods, however, either rely on strict parametric assumptions or are rather ad hoc in which case they often only work approximately under even stricter assumptions. In this paper a non-parametric imputation method is proposed. Since it is non-parametric it works under quite general assumptions. In particular, a model for the complete data is not required in the imputation step, and the complete data method used after the imputation may be a general estimating equation for estimating a finite-dimensional parameter. Large sample results for the resulting estimator are given.  相似文献   

2.
In this paper we propose a latent class based multiple imputation approach for analyzing missing categorical covariate data in a highly stratified data model. In this approach, we impute the missing data assuming a latent class imputation model and we use likelihood methods to analyze the imputed data. Via extensive simulations, we study its statistical properties and make comparisons with complete case analysis, multiple imputation, saturated log-linear multiple imputation and the Expectation–Maximization approach under seven missing data mechanisms (including missing completely at random, missing at random and not missing at random). These methods are compared with respect to bias, asymptotic standard error, type I error, and 95% coverage probabilities of parameter estimates. Simulations show that, under many missingness scenarios, latent class multiple imputation performs favorably when jointly considering these criteria. A data example from a matched case–control study of the association between multiple myeloma and polymorphisms of the Inter-Leukin 6 genes is considered.  相似文献   

3.
研究缺失偏态数据下线性回归模型的参数估计问题,针对缺失偏态数据,为克服样本分布扭曲缺点和提高模型的回归系数、尺度参数和偏度参数的估计效果,提出了一种适合偏态数据下线性回归模型中缺失数据的修正回归插补方法.通过随机模拟和实例研究,并与均值插补、回归插补、随机回归插补方法比较,结果表明所提出的修正回归插补方法是有效可行的.  相似文献   

4.
In the past, many clinical trials have withdrawn subjects from the study when they prematurely stopped their randomised treatment and have therefore only collected ‘on‐treatment’ data. Thus, analyses addressing a treatment policy estimand have been restricted to imputing missing data under assumptions drawn from these data only. Many confirmatory trials are now continuing to collect data from subjects in a study even after they have prematurely discontinued study treatment as this event is irrelevant for the purposes of a treatment policy estimand. However, despite efforts to keep subjects in a trial, some will still choose to withdraw. Recent publications for sensitivity analyses of recurrent event data have focused on the reference‐based imputation methods commonly applied to continuous outcomes, where imputation for the missing data for one treatment arm is based on the observed outcomes in another arm. However, the existence of data from subjects who have prematurely discontinued treatment but remained in the study has now raised the opportunity to use this ‘off‐treatment’ data to impute the missing data for subjects who withdraw, potentially allowing more plausible assumptions for the missing post‐study‐withdrawal data than reference‐based approaches. In this paper, we introduce a new imputation method for recurrent event data in which the missing post‐study‐withdrawal event rate for a particular subject is assumed to reflect that observed from subjects during the off‐treatment period. The method is illustrated in a trial in chronic obstructive pulmonary disease (COPD) where the primary endpoint was the rate of exacerbations, analysed using a negative binomial model.  相似文献   

5.
Mixed models are regularly used in the analysis of clustered data, but are only recently being used for imputation of missing data. In household surveys where multiple people are selected from each household, imputation of missing values should preserve the structure pertaining to people within households and should not artificially change the apparent intracluster correlation (ICC). This paper focuses on the use of multilevel models for imputation of missing data in household surveys. In particular, the performance of a best linear unbiased predictor for both stochastic and deterministic imputation using a linear mixed model is compared to imputation based on a single level linear model, both with and without information about household respondents. In this paper an evaluation is carried out in the context of imputing hourly wage rate in the Household, Income and Labour Dynamics of Australia Survey. Nonresponse is generated under various assumptions about the missingness mechanism for persons and households, and with low, moderate and high intra‐household correlation to assess the benefits of the multilevel imputation model under different conditions. The mixed model and single level model with information about the household respondent lead to clear improvements when the ICC is moderate or high, and when there is informative missingness.  相似文献   

6.
Multiple imputation (MI) is an increasingly popular method for analysing incomplete multivariate data sets. One of the most crucial assumptions of this method relates to mechanism leading to missing data. Distinctness is typically assumed, which indicates a complete independence of mechanisms underlying missingness and data generation. In addition, missing at random or missing completely at random is assumed, which explicitly states under which conditions missingness is independent of observed data. Despite common use of MI under these assumptions, plausibility and sensitivity to these fundamental assumptions have not been well-investigated. In this work, we investigate the impact of non-distinctness and non-ignorability. In particular, non-ignorability is due to unobservable cluster-specific effects (e.g. random-effects). Through a comprehensive simulation study, we show that MI inferences suggest that nonignoriability due to non-distinctness do not immediately imply dismal performance while non-ignorability due to missing not at random leads to quite subpar performance.  相似文献   

7.
Missing covariates data with censored outcomes put a challenge in the analysis of clinical data especially in small sample settings. Multiple imputation (MI) techniques are popularly used to impute missing covariates and the data are then analyzed through methods that can handle censoring. However, techniques based on MI are available to impute censored data also but they are not much in practice. In the present study, we applied a method based on multiple imputation by chained equations to impute missing values of covariates and also to impute censored outcomes using restricted survival time in small sample settings. The complete data were then analyzed using linear regression models. Simulation studies and a real example of CHD data show that the present method produced better estimates and lower standard errors when applied on the data having missing covariate values and censored outcomes than the analysis of the data having censored outcome but excluding cases with missing covariates or the analysis when cases with missing covariate values and censored outcomes were excluded from the data (complete case analysis).  相似文献   

8.
Multiple imputation is widely accepted as the method of choice to address item nonresponse in surveys. Nowadays most statistical software packages include features to multiply impute missing values in a dataset. Nevertheless, the application to real data imposes many implementation problems. To define useful imputation models for a dataset that consists of categorical and possibly skewed continuous variables, contains skip patterns and all sorts of logical constraints is a challenging task. Besides, in most applications little attention is paid to the evaluation of the underlying assumptions behind the imputation models.  相似文献   

9.
Consider estimation of a population mean of a response variable when the observations are missing at random with respect to the covariate. Two common approaches to imputing the missing values are the nonparametric regression weighting method and the Horvitz-Thompson (HT) inverse weighting approach. The regression approach includes the kernel regression imputation and the nearest neighbor imputation. The HT approach, employing inverse kernel-estimated weights, includes the basic estimator, the ratio estimator and the estimator using inverse kernel-weighted residuals. Asymptotic normality of the nearest neighbor imputation estimators is derived and compared to kernel regression imputation estimator under standard regularity conditions of the regression function and the missing pattern function. A comprehensive simulation study shows that the basic HT estimator is most sensitive to discontinuity in the missing data patterns, and the nearest neighbors estimators can be insensitive to missing data patterns unbalanced with respect to the distribution of the covariate. Empirical studies show that the nearest neighbor imputation method is most effective among these imputation methods for estimating a finite population mean and for classifying the species of the iris flower data.  相似文献   

10.
Missing data are a prevalent and widespread data analytic issue and previous studies have performed simulations to compare the performance of missing data methods in various contexts and for various models; however, one such context that has yet to receive much attention in the literature is the handling of missing data with small samples, particularly when the missingness is arbitrary. Prior studies have either compared methods for small samples with monotone missingness commonly found in longitudinal studies or have investigated the performance of a single method to handle arbitrary missingness with small samples but studies have yet to compare the relative performance of commonly implemented missing data methods for small samples with arbitrary missingness. This study conducts a simulation study to compare and assess the small sample performance of maximum likelihood, listwise deletion, joint multiple imputation, and fully conditional specification multiple imputation for a single-level regression model with a continuous outcome. Results showed that, provided assumptions are met, joint multiple imputation unanimously performed best of the methods examined in the conditions under study.  相似文献   

11.
The objective of this research was to demonstrate a framework for drawing inference from sensitivity analyses of incomplete longitudinal clinical trial data via a re‐analysis of data from a confirmatory clinical trial in depression. A likelihood‐based approach that assumed missing at random (MAR) was the primary analysis. Robustness to departure from MAR was assessed by comparing the primary result to those from a series of analyses that employed varying missing not at random (MNAR) assumptions (selection models, pattern mixture models and shared parameter models) and to MAR methods that used inclusive models. The key sensitivity analysis used multiple imputation assuming that after dropout the trajectory of drug‐treated patients was that of placebo treated patients with a similar outcome history (placebo multiple imputation). This result was used as the worst reasonable case to define the lower limit of plausible values for the treatment contrast. The endpoint contrast from the primary analysis was ? 2.79 (p = .013). In placebo multiple imputation, the result was ? 2.17. Results from the other sensitivity analyses ranged from ? 2.21 to ? 3.87 and were symmetrically distributed around the primary result. Hence, no clear evidence of bias from missing not at random data was found. In the worst reasonable case scenario, the treatment effect was 80% of the magnitude of the primary result. Therefore, it was concluded that a treatment effect existed. The structured sensitivity framework of using a worst reasonable case result based on a controlled imputation approach with transparent and debatable assumptions supplemented a series of plausible alternative models under varying assumptions was useful in this specific situation and holds promise as a generally useful framework. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
为了研究缺失偏态数据下的联合位置与尺度模型,基于分布自身的特点,提出了一种适合缺失偏态数据下联合建模的插补方法———修正随机回归插补方法,该方法对缺失数据下模型偏度参数的调整十分显著。通过随机模拟和实例研究,并与回归插补和随机回归插补方法进行比较,结果表明,所提出的修正随机回归插补方法是有用和有效的。  相似文献   

13.
Missing data often complicate the analysis of scientific data. Multiple imputation is a general purpose technique for analysis of datasets with missing values. The approach is applicable to a variety of missing data patterns but often complicated by some restrictions like the type of variables to be imputed and the mechanism underlying the missing data. In this paper, the authors compare the performance of two multiple imputation methods, namely fully conditional specification and multivariate normal imputation in the presence of ordinal outcomes with monotone missing data patterns. Through a simulation study and an empirical example, the authors show that the two methods are indeed comparable meaning any of the two may be used when faced with scenarios, at least, as the ones presented here.  相似文献   

14.
The analysis of time‐to‐event data typically makes the censoring at random assumption, ie, that—conditional on covariates in the model—the distribution of event times is the same, whether they are observed or unobserved (ie, right censored). When patients who remain in follow‐up stay on their assigned treatment, then analysis under this assumption broadly addresses the de jure, or “while on treatment strategy” estimand. In such cases, we may well wish to explore the robustness of our inference to more pragmatic, de facto or “treatment policy strategy,” assumptions about the behaviour of patients post‐censoring. This is particularly the case when censoring occurs because patients change, or revert, to the usual (ie, reference) standard of care. Recent work has shown how such questions can be addressed for trials with continuous outcome data and longitudinal follow‐up, using reference‐based multiple imputation. For example, patients in the active arm may have their missing data imputed assuming they reverted to the control (ie, reference) intervention on withdrawal. Reference‐based imputation has two advantages: (a) it avoids the user specifying numerous parameters describing the distribution of patients' postwithdrawal data and (b) it is, to a good approximation, information anchored, so that the proportion of information lost due to missing data under the primary analysis is held constant across the sensitivity analyses. In this article, we build on recent work in the survival context, proposing a class of reference‐based assumptions appropriate for time‐to‐event data. We report a simulation study exploring the extent to which the multiple imputation estimator (using Rubin's variance formula) is information anchored in this setting and then illustrate the approach by reanalysing data from a randomized trial, which compared medical therapy with angioplasty for patients presenting with angina.  相似文献   

15.
A common problem in the meta analysis of continuous data is that some studies do not report sufficient information to calculate the standard deviation (SDs) of the treatment effect. One of the approaches in handling this problem is through imputation. This article examines the empirical implications of imputing the missing SDs on the standard error (SE) of the overall meta analysis estimate. The simulation results show that if the SDs are missing under Missing Completely at Random and Missing at Random mechanism, imputation is recommended. With non random missing, imputation can lead to overestimation of the SE of the estimate.  相似文献   

16.
In longitudinal studies, nonlinear mixed-effects models have been widely applied to describe the intra- and the inter-subject variations in data. The inter-subject variation usually receives great attention and it may be partially explained by time-dependent covariates. However, some covariates may be measured with substantial errors and may contain missing values. We proposed a multiple imputation method, implemented by a Markov Chain Monte-Carlo method along with Gibbs sampler, to address the covariate measurement errors and missing data in nonlinear mixed-effects models. The multiple imputation method is illustrated in a real data example. Simulation studies show that the multiple imputation method outperforms the commonly used naive methods.  相似文献   

17.
Parameter estimation with missing data is a frequently encountered problem in statistics. Imputation is often used to facilitate the parameter estimation by simply applying the complete-sample estimators to the imputed dataset.In this article, we consider the problem of parameter estimation with nonignorable missing data using the approach of parametric fractional imputation proposed by Kim (2011). Using the fractional weights, the E-step of the EM algorithm can be approximated by the weighted mean of the imputed data likelihood where the fractional weights are computed from the current value of the parameter estimates. Calibration fractional imputation is also considered as a way for improving the Monte Carlo approximation in the fractional imputation. Variance estimation is also discussed. Results from two simulation studies are presented to compare the proposed method with the existing methods. A real data example from the Korea Labor and Income Panel Survey (KLIPS) is also presented.  相似文献   

18.
In this paper, a simulation study is conducted to systematically investigate the impact of dichotomizing longitudinal continuous outcome variables under various types of missing data mechanisms. Generalized linear models (GLM) with standard generalized estimating equations (GEE) are widely used for longitudinal outcome analysis, but these semi‐parametric approaches are only valid under missing data completely at random (MCAR). Alternatively, weighted GEE (WGEE) and multiple imputation GEE (MI‐GEE) were developed to ensure validity under missing at random (MAR). Using a simulation study, the performance of standard GEE, WGEE and MI‐GEE on incomplete longitudinal dichotomized outcome analysis is evaluated. For comparisons, likelihood‐based linear mixed effects models (LMM) are used for incomplete longitudinal original continuous outcome analysis. Focusing on dichotomized outcome analysis, MI‐GEE with original continuous missing data imputation procedure provides well controlled test sizes and more stable power estimates compared with any other GEE‐based approaches. It is also shown that dichotomizing longitudinal continuous outcome will result in substantial loss of power compared with LMM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper considers the estimation of coefficients in a linear regression model with missing observations in the independent variables and introduces a modification of the standard first order regression method for imputation of missing values. The modification provides stochastic values for imputation and, as an extension, makes use of the principle of weighted mixed regression. The proposed procedures are compared with two popular procedures—one which utilizes only the complete observations and the other which employs the standard first order regression imputation method for missing values. A simulation experiment to evaluate the gain in efficiency and to examine interesting issues like the impact of varying degree of multicollinearity in explanatory variables is proceeded. Some work on the case of discrete regressor variables is in progress and will be reported in a future article to follow.  相似文献   

20.
缺失数据是影响调查问卷数据质量的重要因素,对调查问卷中的缺失值进行插补可以显著提高调查数据的质量。调查问卷的数据类型多以分类型数据为主,数据挖掘技术中的分类算法是处理属性分类问题的常用方法,随机森林模型是众多分类算法中精度较高的方法之一。将随机森林模型引入调查问卷缺失数据的插补研究中,提出了基于随机森林模型的分类数据缺失值插补方法,并根据不同的缺失模式探讨了相应的插补步骤。通过与其它方法的实证模拟比较,表明随机森林插补法得到的插补值准确度更优、可信度更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号