首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Statistical Methods & Applications - The current literature views Simpson’s paradox as a probabilistic conundrum by taking the premises (probabilities/parameters/ frequencies) as known....  相似文献   

3.
A general result for obtaining recurrence relations between product moments of order statistics is established and this result is used to determine the recurrence relations between product moments of some doubly truncated distributions. The examples considered are Weibull, exponential, Pareto, power function and Cauchy distributions.  相似文献   

4.
In this paper some recurrence relations of moments of doubly truncated multivariate normal distribution are obtained. The bivariate case is given as an example and some applications are indicated.  相似文献   

5.
Certain recurrence relations for the single and product moments of the order statistics of a random sample of sizen arising from a beta distribution are derived. The usefulness of these relations in evaluating the single and product moments of beta order statistics is also discussed.  相似文献   

6.
In this paper some recurrence relations between the moments of record values from the generalized extreme value distribution are established. It is shown that using these recurrence relations, all the single and product moments of all record values can be obtained in a simple recursive manner.  相似文献   

7.
Certain recurrence relations for the moments of different orders of the largest order statistic from a gamma distribution with shape parameter p are obtained. By using this it is shown that for obtaining the moment of any order of each order statistic of a sample of size n from the gamma distribution, one has to evaluate at most n-2 single integrals.  相似文献   

8.
In this paper we establish some recurrence relations satisfied by single and product moments of upper record values from the generalized Pareto distribution. It is shown that these relations may be used to obtain all the single and product moments of all record values in a simple recursive manner. We also show that similar results established recently by Balakrishnan and Ahsanullah (1993) for the upper record values from the exponential distribution may be deduced by letting the shape parameter p tend to 0.  相似文献   

9.
James(1960) defined the zonal polynomials and used it to represent the joint distributions of latent roots of VVisfiart matrix. The zonal polviionnals played an important role to define the generalized hypergeometric function of symmetric matrix argument Since then, many density functions and moments based on Wishart matrix have been expressed in terms of the generalized hy¬pergeometric Function. The purpose of this paper is to get the recurrence relations for the coefficients of it. In Section 1 we derive a partial differen¬tial equations having the generalized hypergeometric function as the unique solution. Then we ubtain the recurrence relations until order 7 in Section 2.  相似文献   

10.
In this paper some recurrence relations between moments of progressive Type-II right censored order statistics from doubly truncated Burr distribution are established. These recurrence relations would enable one to obtain all the single and product moments of Burr progressive Type-II right censored order statistics in a simple recursive manner.  相似文献   

11.
In this paper, we review several recurrence relations and identities established for the single and product moments of order statistics from an arbitrary continuous distribution. We point out the interrelationships between many of these recurrence relations. We discuss the results giving the bounds for the number of single and double integrals needed to be evaluated in order to compute the first, second and product moments of order statistics in a sample of size n from an arbitrary continuous distribution, given these moments in samples of sizes n-1 and less. Improvements of these bounds for the case of symmetric continuous distributions are also discussed  相似文献   

12.
We obtain a new technique to calculate the value of the minimum variance unbiased estimator (MVUE) of the probability function (p.f.) of the R distribution. This technique is based on an investigation of the ratios of r numbers. A recurrence relation for the MVUE of the p.f. of the R distribution is derived. It is interesting that the derived relation does not depend on the r numbers but depends on the ratios of the r numbers. The new method is efficient, convenient and accurate.  相似文献   

13.
In this paper, we establish several recurrence relations for the single and product moments of progressively Type-II right censored order statistics from a logistic distribution. The use of these relations in a systematic manner allows us to compute all the means, variances and covariances of progressively Type-II right censored order statistics from the logistic distribution for all sample sizes n, effective sample sizes m, and all progressive censoring schemes (R1,…,Rm). The results established here generalize the corresponding results for the usual order statistics due to [Shah, 1966] and [Shah, 1970]. These moments are then utilized to derive best linear unbiased estimators of the location and scale parameters of the logistic distribution. A comparison of these estimators with the maximum likelihood estimations is then made. The best linear unbiased predictors of censored failure times are briefly discussed. Finally, an illustrative example is presented.  相似文献   

14.
15.
In this note we give recurrence relations satisfied by single and product momenrs of k-th upper-record values from the Pareto, generalized Pareto and Burr distributions. From these relations one can obtain all the single and product moments of all k-th record values and at the same time all record values ( k=1). Moreover, we see that the single and product moment of all k-th record values from these distributions can be exprrssed in terms of the moments of the minimal statistic of a k-sample from the exponential distribution may be deduced by letting the shape parameter deptend to 0. At the end we give characterizations of the three distributions considered. These results generalize, among other things, those given by Balakrishnan and Abuamllah (1994).  相似文献   

16.
In this paper, we derive several recurrence relations satisfied by the single and product moments of order statistics from a generalized half logistic distribution. These generalize the corresponding results for the half logistic distribution established by Balakrishnan (1985). The relations established in this paper will enable one to compute the single and product moments of all order statistics for all sample sizes in a simple recursive manner; this may be done for any choice of the shape parameter k. These moments can then be used to determine the best linear unbiased estimators of location and scale parameters from complete as well as Type-I1 censored samples.  相似文献   

17.
In this article, we establish several recurrence relations for the single and product moments of progressively Type-II right censored order statistics from a generalized logistic distribution. The use of these relations in a systematic manner allow us to compute all the means, variances, and covariances of progressively Type-II right censored order statistics from the generalized logistic distribution for all sample sizes n, effective sample sizes m, and all progressive censoring schemes (R1, …, Rm). These moments are then utilized to derive best linear unbiased estimators of the scale and location-scale parameters of the generalized logistic distribution. A comparison of these estimators with the maximum likelihood estimates is then made through Monte Carlo simulations. Finally, the best linear unbiased predictors of censored failure times is discussed briefly.  相似文献   

18.
工业是国民经济的主要组成部分,工业经济形势的稳定与否对国民经济的整体态势有着决定性的影响。因此,研究工业生产的波动对宏观经济运行机制的研究无疑具有极为重要的意义。本文以工业总生值月度统计数据为基础,着力刻划了工业生产波动的形态和特征,如实描述了工业生产经历的过程,以期对国民经济整体运行机制的研究提供一个客观的事实基础和数字根据。  相似文献   

19.
In this paper, we establish several recurrence relations for the single and product moments of progressively Type-II right-censored order statistics from a generalized half-logistic distribution. The use of these relations in a systematic recursive manner enables the computation of all the means, variances, and covariances of progressively Type-II right-censored order statistics from the generalized half-logistic distribution for all sample sizes n, effective sample sizes m, and all progressive censoring schemes (R 1, …, R m ). The results established here generalize the corresponding results for the usual order statistics due to Balakrishnan and Sandhu [Recurrence relations for single and product moments of order statistics from a generalized half-logistic distribution with applications to inference, J. Stat. Comput. Simul. 52 (1995), pp. 385–398.]. The moments so determined are then utilized to derive the best linear unbiased estimators of the scale and location–scale parameters of the generalized half-logistic distribution. The best linear unbiased predictors of censored failure times are discussed briefly. Finally, a numerical example is presented to illustrate the inferential method developed here.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号