首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

This paper deals with Geo/G/1 queues with a repairable server. The server is subject to failure due to a disaster arrival, which can occur while the server is turned on and not only when it is busy. At a failure instant, the server is turned off and its repair process begins. During the repair process, two models are considered. For both models, we present the PGF and the expected number of clients in the system in the steady state.  相似文献   

2.
《随机性模型》2013,29(1):185-213
ABSTRACT

We consider a class of single server queueing systems in which customers arrive singly and service is provided in batches, depending on the number of customers waiting when the server becomes free. Service is independent of the batch size. This system could also be considered as a batch service queue in which a server visits the queue at arbitrary times and collects a batch of waiting customers for service, or waits for a customer to arrive if there are no waiting customers. A waiting server immediately collects and processes the first arriving customer. The system is considered in discrete time. The interarrival times of customers and the inter-visit times of the server, which we call the service time, have general distributions and are represented as remaining time Markov chains. We analyze this system using the matrix-geometric method and show that the resulting R matrix can be determined explicitly in some special cases and the stationary distributions are known semi-explicitly in some other special cases.  相似文献   

3.
《随机性模型》2013,29(2-3):531-550
ABSTRACT

In this paper, we consider a retrial queueing system consisting of a waiting line of infinite capacity in front of a single server subject to breakdowns. A customer upon arrival may join the queue (waiting line) or go to the retrial orbit (another queue) to retry for service after a random time. Only the customer at the head of the retrial orbit is allowed to retry for service. Upon retrial, the customer enters the service if the server is idle; otherwise, it may go back to the retrial orbit or leave the system (become impatient). All the interarrival times, service times, server up times, server down times and retrial times are exponential, and all the necessary independence conditions in these variables are assumed. For this system, we provide sufficient conditions under which, for any given number of customers in the orbit, the stationary probability of the number of customers in the waiting line decays geometrically. We also provide explicitly an expression for the decay parameter.  相似文献   

4.
Abstract

In this article, customers’ strategic behavior and social optimation in a constant retrial queue with setup time and the N-policy are investigated. Customers who find the server isn’t idle either leave forever or enter an orbit. After a service, the server will seek a customer from the orbit at a constant rate. The server is closed whenever the system becomes empty, and is activated when the number of waitlisted customers reaches a threshold. We obtain the equilibrium arrival rates in different states. There exist both Follow-the-Crowd (FTC) and Avoid-the-Crowd (ATC) behaviors. Through the Particle Swarm Optimization (PSO) algorithm, we numerically obtain the optimal solution of the social welfare maximization problem. Finally, numerical examples are presented to illustrate the sensitivity of system performance measures.  相似文献   

5.
Abstract

In this article we consider an unreliable MX/G/1 queue with two types of general heterogeneous service and optional repeated service subject to server’s break down and delayed repair under randomized vacation policy. We assume that customer arrive to the system according to a compound Poisson process. The server provides two types of general heterogeneous service and a customer can choose either type of service before its service start. After the completion of either type of service, the customer has the further option to repeat the same type of service once again. While the server is working with any types of service or repeated service, it may breakdown at any instant. Further the concept of randomized vacation is also introduced. For this model, we first derive the joint distribution of state of the server and queue size by considering both elapsed and remaining time, which is one of the objective of this article. Next, we derive Laplace Stieltjes transform of busy period distribution. Finally, we obtain some important performance measure and reliability indices of this model.  相似文献   

6.
In this paper, an M/G/1 retrial system with two classes of customers: transit and recurrent customers is studied. After service completion, recurrent customers always return to the orbit and transit customers leave the system forever. The server is subject to breakdowns and delayed repairs. The customer whose service is interrupted stays in the service, waiting for delay and repair of the server. After repair this customer completes his service. The study of the system concerns the joint generating function of the server state and the queue length in steady state. Some performance measures of the system are then derived and some numerical results are presented to illustrate the effect of the system parameters on the developed performance measures.  相似文献   

7.
This paper aims at presenting an analytic approach for investigating a single-server retrial queue with finite population of customers where the server is subject to interruptions. A free source may generate a primary call to request service. If the server is free upon arrival, the call starts to be served and the service times are independent, generally distributed random variables. During the service time the source cannot generate a new primary call. After service the source moves into the free state and can generate a new primary call. There is no waiting space in front of the server, and a call who finds the server unavailable upon arrival joins an orbit of unsatisfied customers. The server is subject to interruptions during the service processes. When the server is interrupted, the call being served just before server interruption goes to the retrial orbit and will retry its luck after a random amount of time until it finds the server available. The recovery times of the interrupted server are assumed to be generally distributed. Our analysis extends previous work on this topic and includes the analysis of the arriving customer’s distribution, the busy period, and the waiting time process.  相似文献   

8.
We study a system of two non-identical and separate M/M/1/? queues with capacities (buffers) C1 < ∞ and C2 = ∞, respectively, served by a single server that alternates between the queues. The server’s switching policy is threshold-based, and, in contrast to other threshold models, is determined by the state of the queue that is not being served. That is, when neither queue is empty while the server attends Qi (i = 1, 2), the server switches to the other queue as soon as the latter reaches its threshold. When a served queue becomes empty we consider two switching scenarios: (i) Work-Conserving, and (ii) Non-Work-Conserving. We analyze the two scenarios using Matrix Geometric methods and obtain explicitly the rate matrix R, where its entries are given in terms of the roots of the determinants of two underlying matrices. Numerical examples are presented and extreme cases are investigated.  相似文献   

9.
《随机性模型》2013,29(2-3):695-724
Abstract

We consider two variants of a two-station tandem network with blocking. In both variants the first server ceases to work when the queue length at the second station hits a ‘blocking threshold.’ In addition, in variant 2 the first server decreases its service rate when the second queue exceeds a ‘slow-down threshold, ’ which is smaller than the blocking level. In both variants the arrival process is Poisson and the service times at both stations are exponentially distributed. Note, however, that in case of slow-downs, server 1 works at a high rate, a slow rate, or not at all, depending on whether the second queue is below or above the slow-down threshold or at the blocking threshold, respectively. For variant 1, i.e., only blocking, we concentrate on the geometric decay rate of the number of jobs in the first buffer and prove that for increasing blocking thresholds the sequence of decay rates decreases monotonically and at least geometrically fast to max1, ρ2}, where ρ i is the load at server i. The methods used in the proof also allow us to clarify the asymptotic queue length distribution at the second station. Then we generalize the analysis to variant 2, i.e., slow-down and blocking, and establish analogous results.  相似文献   

10.
This paper deals with a single server Poisson arrival queue with two phases of heterogeneous service along with a Bernoulli schedule vacation model, where after two successive phases service the server either goes for a vacation with probability p (0≤p≤1) or may continue to serve the next unit, if any, with probability q(=1−p). Further the concept of multiple vacation policy is also introduced here. We obtained the queue size distributions at a departure epoch and at a random epoch, Laplace Stieltjes Transform of the waiting time distribution and busy period distribution along with some mean performance measures. Finally we discuss some statistical inference related issues.  相似文献   

11.
To protect public-use microdata, one approach is not to allow users access to the microdata. Instead, users submit analyses to a remote computer that reports back basic output from the fitted model, such as coefficients and standard errors. To be most useful, this remote server also should provide some way for users to check the fit of their models, without disclosing actual data values. This paper discusses regression diagnostics for remote servers. The proposal is to release synthetic diagnostics—i.e. simulated values of residuals and dependent and independent variables–constructed to mimic the relationships among the real-data residuals and independent variables. Using simulations, it is shown that the proposed synthetic diagnostics can reveal model inadequacies without substantial increase in the risk of disclosures. This approach also can be used to develop remote server diagnostics for generalized linear models.  相似文献   

12.
《随机性模型》2013,29(2-3):485-505
ABSTRACT

We study the queue length distribution of a queueing system with BMAP arrivals under D-policy. The idle server begins to serve the customers only when the sum of the service times of all waiting customers exceeds some fixed threshold D. We derive the vector generating functions of the queue lengths both at a departure and at an arbitrary point of time. Mean queue lengths are derived and a numerical example is presented.  相似文献   

13.
《随机性模型》2013,29(3):363-380
Abstract

We study the queue length distribution of a queueing system with MAP arrivals under D-policy. The idle server begins to serve the customers only when the sum of the service times of all waiting customers exceeds some fixed threshold D. We derive the vector generating functions of the queue lengths both at a departure and at an arbitrary point of time. Mean queue lengths will be derived from these transform results. A numerical example is provided.  相似文献   

14.
In the study of normal queueing systems, the server’s average service times are generally assumed to be constant. However, in numerous applications this assumption may not be valid. To prevent congestion in overload control telecommunication networks, the transmission rates vary depending on the number of packets waiting in the queue. As traffics in telecommunication networks are of bursty nature and correlated, we assume that arrivals follow the discrete-time Markovian arrival process. This paper analyzes a queueing model in which the server changes its service times (rates) only at the beginning of service depending on the number of customers waiting in the queue. We obtain the steady-state probabilities at various epochs and some performance measures. In addition, varieties of numerical results are discussed to display the effect of the system parameters on the performance measures.  相似文献   

15.
A concept of the lack-of-memory property at a given time point c > 0 is introduced. It is equivalent to the concept of the almost-lack-of-memory (ALM) property of the random variables. A representation theorem is given for the cumulative distribution function of such random variables as well as for corresponding decompositions in terms of independent random variables. It is shown that a periodic failure rate for a random variable is equivalent to the ALM property. In addition some properties of the service time of an unreliable server are observed.  相似文献   

16.
17.
ABSTRACT

We consider the distributions of operating characteristics of an M[x]/G/1 queue under vacation policies, where the first customer of each busy period receives an exceptional service. When all the customers are served in the system exhaustively, the server deactivates and operates one of two vacation policies: (1) multiple vacation policy and (2) single vacation policy. We develop the performance measures for both systems. Finally, some numerical illustrations are also given. These two vacation models have potential applications in day-to-day life, such as post offices, banks, hospitals, etc.  相似文献   

18.
This paper considers an M[X]/G/1 queue with breakdowns, repair, Bernoulli vacation, two delays and geometric loss. In this paper, a special attention is given to the limiting distribution of system states. We obtain simplified expressions for the Probability Generating Functions (PGFs) of the joint distribution of server state and system size. Some performance measures were derived from the analysis of the steady state probabilities. PGF of a departure point system size distribution is developed. Particular cases of the studied system were investigated. The effect of system parameters on the main performance measures are illustrated and discussed.  相似文献   

19.
We consider an infinite-buffer single server queue with batch Markovian arrival process (BMAP) and exhaustive service discipline under multiple working vacation policy. The service time during a working vacation is generally distributed random variable which is independent of the service times during a normal busy period as well as the arrival process. Duration of service times during a normal busy period and duration of working vacation times follow the class of distributions whose Laplace-Stieltjes transforms are rational functions (R-type distributions). The service time during a normal busy period, working vacation time, and the service time during a working vacation are independent of each other as well as of the arrival process. If a working vacation terminates while service is going on for a customer at head of the queue in vacation mode then, the server switches to normal mode and the customer at head of the queue is entitled to receive a full service time in the normal busy period irrespective of the amount of service received by the customer at head of the queue during the previous working vacation period. We obtain system-length distributions at various epoch, such as post-departure, pre-arrival, arbitrary, and pre-service. The proposed analysis is based on the use of matrix-analytic procedure to obtain system-length distribution at post-departure epoch. Later, we use supplementary variable technique and simple algebraic manipulations to obtain system-length distribution at arbitrary epoch using the system-length distribution at post-departure epoch. Some important performance measures, such as mean system lengths and mean waiting time have been obtained. Finally, some numerical results have been presented in the form of tables and graphs to show the applicability of the results obtained in this article. The model has potential application in areas of computer and communication networks, such as ethernet passive optical network (EPON).  相似文献   

20.
We consider an M/G/1 queueing model with N-policy operating. This means, that the server will start up only if a queue of a prescribed length has built up. For this model the time dependent distribution of the queue length is given by simple renewal arguments without resorting to integral transform techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号