首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
For a (molecular) graph, the first Zagreb index M 1 is equal to the sum of squares of the vertex degrees, and the second Zagreb index M 2 is equal to the sum of products of degrees of pairs of adjacent vertices. In this paper, we investigate the first and the second Zagreb indices of maximal outerplanar graph. We determine sharp upper and lower bounds for M 1-, M 2-values among the n-vertex maximal outerplanar graphs. As well we determine sharp upper and lower bounds of Zagreb indices for n-vertex outerplanar graphs (resp. maximal outerplanar graphs) with perfect matchings.  相似文献   

2.
Given a configuration of pebbles on the vertices of a connected graph G, a pebbling move removes two pebbles from some vertex and places one pebble on an adjacent vertex. The pebbling number of a graph G is the smallest integer k such that for each vertex v and each configuration of k pebbles on G there is a sequence of pebbling moves that places at least one pebble on v. First, we improve on results of Hurlbert, who introduced a linear optimization technique for graph pebbling. In particular, we use a different set of weight functions, based on graphs more general than trees. We apply this new idea to some graphs from Hurlbert’s paper to give improved bounds on their pebbling numbers. Second, we investigate the structure of Class 0 graphs with few edges. We show that every n-vertex Class 0 graph has at least \(\frac{5}{3}n - \frac{11}{3}\) edges. This disproves a conjecture of Blasiak et al. For diameter 2 graphs, we strengthen this lower bound to \(2n - 5\), which is best possible. Further, we characterize the graphs where the bound holds with equality and extend the argument to obtain an identical bound for diameter 2 graphs with no cut-vertex.  相似文献   

3.
In the minimum weighted dominating set problem (MWDS), we are given a unit disk graph with non-negative weight on each vertex. The MWDS seeks a subset of the vertices of the graph with minimum total weight such that each vertex of the graph is either in the subset or adjacent to some nodes in the subset. A?weight function is called smooth, if the ratio of the weights of any two adjacent nodes is upper bounded by a constant. MWDS is known to be NP-hard. In this paper, we give the first polynomial time approximation scheme (PTAS) for MWDS with smooth weights on unit disk graphs, which achieves a (1+ε)-approximation for MWDS, for any ε>0.  相似文献   

4.
Let G be a connected graph of order n. The long-standing open and close problems in distance graph theory are: what is the Wiener index W(G) or average distance \(\mu (G)\) among all graphs of order n with diameter d (radius r)? There are very few number of articles where were worked on the relationship between radius or diameter and Wiener index. In this paper, we give an upper bound on Wiener index of trees and graphs in terms of number of vertices n, radius r, and characterize the extremal graphs. Moreover, from this result we give an upper bound on \(\mu (G)\) in terms of order and independence number of graph G. Also we present another upper bound on Wiener index of graphs in terms of number of vertices n, radius r and maximum degree \(\Delta \), and characterize the extremal graphs.  相似文献   

5.
For k??1 an integer, a set S of vertices in a graph G with minimum degree at least?k is a k-tuple total dominating set of G if every vertex of G is adjacent to at least k vertices in S. The minimum cardinality of a k-tuple total dominating set of G is the k-tuple total domination number of G. When k=1, the k-tuple total domination number is the well-studied total domination number. In this paper, we establish upper and lower bounds on the k-tuple total domination number of the cross product graph G×H for any two graphs G and H with minimum degree at least?k. In particular, we determine the exact value of the k-tuple total domination number of the cross product of two complete graphs.  相似文献   

6.
For a graph G, the first Zagreb index M 1 is equal to the sum of squares of the vertex degrees, and the second Zagreb index M 2 is equal to the sum of the products of degrees of pairs of adjacent vertices. The Zagreb indices have been the focus of considerable research in computational chemistry dating back to Gutman and Trinajsti? in 1972. In 2004, Das and Gutman determined sharp upper and lower bounds for M 1 and M 2 values for trees along with the unique trees that obtain the minimum and maximum M 1 and M 2 values respectively. In this paper, we generalize the results of Das and Gutman to the generalized tree, the k-tree, where the results of Das and Gutman are for k=1. Also by showing that maximal outerplanar graphs are 2-trees, we also extend a result of Hou, Li, Song, and Wei who determined sharp upper and lower bounds for M 1 and M 2 values for maximal outerplanar graphs.  相似文献   

7.
The maximum independent set problem is one of the most important problems in theoretical analysis on time and space complexities of exact algorithms. Theoretical improvement on upper bounds on time complexity to solve this problem in low-degree graphs can lead to an improvement on that to the problem in general graphs. In this paper, we derive an upper bound \(O^*(1.1376^n)\) on the time complexity of a polynomial-space algorithm that solves the maximum independent set problem in an n-vertex graph with degree bounded by 4, improving all previous upper bounds on the time complexity of exact algorithms to this problem. Our algorithm is a branch-and-reduce algorithm and analyzed by using the measure-and-conquer method. To make an amortized analysis of the running time bound, we use an idea of “shift” to save some decrease of the measure from good branches to bad branches. Our algorithm first deals with small vertex cuts and vertices of degree \({\ge }5\), which may be created in our algorithm even if the input graph has maximum degree 4, then eliminates cycles of length 3 and 4 containing degree-4 vertices, and finally branches on degree-4 vertices. We invoke an exact algorithm for this problem in graphs with maximum degree 3 directly when the graph has no vertices of degree \({\ge }4\). Branching on degree-4 vertices on special local structures will be the bottleneck case, and we carefully design rules of choosing degree-4 vertices to branch on so that the resulting instances after branching decrease the measure effectively in the next step.  相似文献   

8.
Given a connected and weighted graph \(G=(V, E)\) with each vertex v having a nonnegative weight w(v), the minimum weighted connected vertex cover \(P_{3}\) problem \((MWCVCP_{3})\) is required to find a subset C of vertices of the graph with minimum total weight, such that each path with length 2 has at least one vertex in C, and moreover, the induced subgraph G[C] is connected. This kind of problem has many applications concerning wireless sensor networks and ad hoc networks. When homogeneous sensors are deployed into a three-dimensional space instead of a plane, the mathematical model for the sensor network is a unit ball graph instead of a unit disk graph. In this paper, we propose a new concept called weak c-local and give the first polynomial time approximation scheme (PTAS) for \(MWCVCP_{3}\) in unit ball graphs when the weight is smooth and weak c-local.  相似文献   

9.
A set S of vertices of a graph G is a total outer-connected dominating set if every vertex in V(G) is adjacent to some vertex in S and the subgraph induced by V?S is connected. The total outer-connected domination number γ toc (G) is the minimum size of such a set. We give some properties and bounds for γ toc in general graphs and in trees. For graphs of order n, diameter 2 and minimum degree at least 3, we show that $\gamma_{toc}(G)\le \frac{2n-2}{3}$ and we determine the extremal graphs.  相似文献   

10.
Let \(G\) be a graph with no isolated vertex. In this paper, we study a parameter that is a relaxation of arguably the most important domination parameter, namely the total domination number, \(\gamma _t(G)\). A set \(S\) of vertices in \(G\) is a disjunctive total dominating set of \(G\) if every vertex is adjacent to a vertex of \(S\) or has at least two vertices in \(S\) at distance \(2\) from it. The disjunctive total domination number, \(\gamma ^d_t(G)\), is the minimum cardinality of such a set. We observe that \(\gamma ^d_t(G) \le \gamma _t(G)\). We prove that if \(G\) is a connected graph of order \(n \ge 8\), then \(\gamma ^d_t(G) \le 2(n-1)/3\) and we characterize the extremal graphs. It is known that if \(G\) is a connected claw-free graph of order \(n\), then \(\gamma _t(G) \le 2n/3\) and this upper bound is tight for arbitrarily large \(n\). We show this upper bound can be improved significantly for the disjunctive total domination number. We show that if \(G\) is a connected claw-free graph of order \(n > 14\), then \(\gamma ^d_t(G) \le 4n/7\) and we characterize the graphs achieving equality in this bound.  相似文献   

11.
An edge-coloured path is rainbow if its edges have distinct colours. An edge-coloured connected graph is said to be rainbow connected if any two vertices are connected by a rainbow path, and strongly rainbow connected if any two vertices are connected by a rainbow geodesic. The (strong) rainbow connection number of a connected graph is the minimum number of colours needed to make the graph (strongly) rainbow connected. These two graph parameters were introduced by Chartrand et al. (Math Bohem 133:85–98, 2008). As an extension, Krivelevich and Yuster proposed the concept of rainbow vertex-connection. The topic of rainbow connection in graphs drew much attention and various similar parameters were introduced, mostly dealing with undirected graphs. Dorbec, Schiermeyer, Sidorowicz and Sopena extended the concept of the rainbow connection to digraphs. In this paper, we consider the (strong) rainbow vertex-connection number of digraphs. Results on the (strong) rainbow vertex-connection number of biorientations of graphs, cycle digraphs, circulant digraphs and tournaments are presented.  相似文献   

12.
The max-coloring problem is to compute a legal coloring of the vertices of a graph G=(V,E) with vertex weights w such that $\sum_{i=1}^{k}\max_{v\in C_{i}}w(v_{i})$ is minimized, where C 1,??,C k are the various color classes. For general graphs, max-coloring is as hard as the classical vertex coloring problem, a special case of the former where vertices have unit weight. In fact, in some cases it can even be harder: for example, no polynomial time algorithm is known for max-coloring trees. In this paper we consider the problem of max-coloring paths and its generalization, max-coloring skinny trees, a broad class of trees that includes paths and spiders. For these graphs, we show that max-coloring can be solved in time O(|V|+time for sorting the vertex weights). When vertex weights are real numbers, we show a matching lower bound of ??(|V|log?|V|) in the algebraic computation tree model.  相似文献   

13.
In this paper we continue the study of Roman dominating functions in graphs. A signed Roman dominating function (SRDF) on a graph G=(V,E) is a function f:V→{?1,1,2} satisfying the conditions that (i) the sum of its function values over any closed neighborhood is at least one and (ii) for every vertex u for which f(u)=?1 is adjacent to at least one vertex v for which f(v)=2. The weight of a SRDF is the sum of its function values over all vertices. The signed Roman domination number of G is the minimum weight of a SRDF in G. We present various lower and upper bounds on the signed Roman domination number of a graph. Let G be a graph of order n and size m with no isolated vertex. We show that $\gamma _{\mathrm{sR}}(G) \ge\frac{3}{\sqrt{2}} \sqrt{n} - n$ and that γ sR(G)≥(3n?4m)/2. In both cases, we characterize the graphs achieving equality in these bounds. If G is a bipartite graph of order n, then we show that $\gamma_{\mathrm{sR}}(G) \ge3\sqrt{n+1} - n - 3$ , and we characterize the extremal graphs.  相似文献   

14.
An edge colored graph is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number, rc-number for short, of a graph \({\varGamma }\), is the smallest number of colors that are needed in order to make \({\varGamma }\) rainbow connected. In this paper, we give a method to bound the rc-numbers of graphs with certain structural properties. Using this method, we investigate the rc-numbers of Cayley graphs, especially, those defined on abelian groups and on dihedral groups.  相似文献   

15.
Vertex and Tree Arboricities of Graphs   总被引:1,自引:0,他引:1  
This paper studies the following variations of arboricity of graphs. The vertex (respectively, tree) arboricity of a graph G is the minimum number va(G) (respectively, ta(G)) of subsets into which the vertices of G can be partitioned so that each subset induces a forest (respectively, tree). This paper studies the vertex and the tree arboricities on various classes of graphs for exact values, algorithms, bounds, hamiltonicity and NP-completeness. The graphs investigated in this paper include block-cactus graphs, series-parallel graphs, cographs and planar graphs.  相似文献   

16.
A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number $\mathrm{sd}_{\gamma_{t}}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Favaron, Karami, Khoeilar and Sheikholeslami (J. Comb. Optim. 20:76–84, 2010a) conjectured that: For any connected graph G of order n≥3, $\mathrm{sd}_{\gamma_{t}}(G)\le \gamma_{t}(G)+1$ . In this paper we use matching to prove this conjecture for graphs with no 3-cycle and 5-cycle. In particular this proves the conjecture for bipartite graphs.  相似文献   

17.
A subset M of vertices of a graph is called a static monopoly, if any vertex v outside M has at least \(\lceil \tfrac{1 }{2}\deg (v)\rceil \) neighbors in M. The minimum static monopoly problem has been extensively studied in graph theoretical context. We study this problem from an integer programming point of view for the first time and give a linear formulation for it. We study the facial structure of the corresponding polytope, classify facet defining inequalities of the integer programming formulation and introduce some families of valid inequalities. We show that in the presence of a vertex cut or an edge cut in the graph, the problem can be solved more efficiently by adding some strong valid inequalities. An algorithm is given that solves the minimum monopoly problem in trees and cactus graphs in linear time. We test our methods by performing several experiments on randomly generated graphs. A software package is introduced that solves the minimum monopoly problem using open source integer linear programming solvers.  相似文献   

18.
We study a new coloring concept which generalizes the classical vertex coloring problem in a graph by extending the notion of stable sets to split graphs. First of all, we propose the packing problem of finding the split graph of maximum size where a split graph is a graph G = (V,E) in which the vertex set V can be partitioned into a clique K and a stable set S. No condition is imposed on the edges linking vertices in S to the vertices in K. This maximum split graph problem gives rise to an associated partitioning problem that we call the split-coloring problem. Given a graph, the objective is to cover all his vertices by a least number of split graphs. Definitions related to this new problem are introduced. We mention some polynomially solvable cases and describe open questions on this area. An erratum to this article is available at .  相似文献   

19.
The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well-known domination problem in graphs. Following a set of rules for power system monitoring, a set S of vertices is defined to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S. The minimum cardinality of a power dominating set of G is the power domination number γ p (G). In this paper, we investigate the power domination number for the generalized Petersen graphs, presenting both upper bounds for such graphs and exact results for a subfamily of generalized Petersen graphs.  相似文献   

20.
Let G=(V,E) be a simple graph without isolated vertices. A set S?V is a paired-dominating set if every vertex in V?S has at least one neighbor in S and the subgraph induced by S contains a perfect matching. In this paper, we present a linear-time algorithm to determine whether a given vertex in a block graph is contained in all its minimum paired-dominating sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号