首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a semiparametric two‐step inference procedure for a finite‐dimensional parameter based on moment conditions constructed from high‐frequency data. The population moment conditions take the form of temporally integrated functionals of state‐variable processes that include the latent stochastic volatility process of an asset. In the first step, we nonparametrically recover the volatility path from high‐frequency asset returns. The nonparametric volatility estimator is then used to form sample moment functions in the second‐step GMM estimation, which requires the correction of a high‐order nonlinearity bias from the first step. We show that the proposed estimator is consistent and asymptotically mixed Gaussian and propose a consistent estimator for the conditional asymptotic variance. We also construct a Bierens‐type consistent specification test. These infill asymptotic results are based on a novel empirical‐process‐type theory for general integrated functionals of noisy semimartingale processes.  相似文献   

2.
Stochastic discount factor (SDF) processes in dynamic economies admit a permanent‐transitory decomposition in which the permanent component characterizes pricing over long investment horizons. This paper introduces an empirical framework to analyze the permanent‐transitory decomposition of SDF processes. Specifically, we show how to estimate nonparametrically the solution to the Perron–Frobenius eigenfunction problem of Hansen and Scheinkman, 2009. Our empirical framework allows researchers to (i) construct time series of the estimated permanent and transitory components and (ii) estimate the yield and the change of measure which characterize pricing over long investment horizons. We also introduce nonparametric estimators of the continuation value function in a class of models with recursive preferences by reinterpreting the value function recursion as a nonlinear Perron–Frobenius problem. We establish consistency and convergence rates of the eigenfunction estimators and asymptotic normality of the eigenvalue estimator and estimators of related functionals. As an application, we study an economy where the representative agent is endowed with recursive preferences, allowing for general (nonlinear) consumption and earnings growth dynamics.  相似文献   

3.
We introduce the class of conditional linear combination tests, which reject null hypotheses concerning model parameters when a data‐dependent convex combination of two identification‐robust statistics is large. These tests control size under weak identification and have a number of optimality properties in a conditional problem. We show that the conditional likelihood ratio test of Moreira, 2003 is a conditional linear combination test in models with one endogenous regressor, and that the class of conditional linear combination tests is equivalent to a class of quasi‐conditional likelihood ratio tests. We suggest using minimax regret conditional linear combination tests and propose a computationally tractable class of tests that plug in an estimator for a nuisance parameter. These plug‐in tests perform well in simulation and have optimal power in many strongly identified models, thus allowing powerful identification‐robust inference in a wide range of linear and nonlinear models without sacrificing efficiency if identification is strong.  相似文献   

4.
It is well known that the finite‐sample properties of tests of hypotheses on the co‐integrating vectors in vector autoregressive models can be quite poor, and that current solutions based on Bartlett‐type corrections or bootstrap based on unrestricted parameter estimators are unsatisfactory, in particular in those cases where also asymptotic χ2 tests fail most severely. In this paper, we solve this inference problem by showing the novel result that a bootstrap test where the null hypothesis is imposed on the bootstrap sample is asymptotically valid. That is, not only does it have asymptotically correct size, but, in contrast to what is claimed in existing literature, it is consistent under the alternative. Compared to the theory for bootstrap tests on the co‐integration rank (Cavaliere, Rahbek, and Taylor, 2012), establishing the validity of the bootstrap in the framework of hypotheses on the co‐integrating vectors requires new theoretical developments, including the introduction of multivariate Ornstein–Uhlenbeck processes with random (reduced rank) drift parameters. Finally, as documented by Monte Carlo simulations, the bootstrap test outperforms existing methods.  相似文献   

5.
The ill‐posedness of the nonparametric instrumental variable (NPIV) model leads to estimators that may suffer from poor statistical performance. In this paper, we explore the possibility of imposing shape restrictions to improve the performance of the NPIV estimators. We assume that the function to be estimated is monotone and consider a sieve estimator that enforces this monotonicity constraint. We define a constrained measure of ill‐posedness that is relevant for the constrained estimator and show that, under a monotone IV assumption and certain other mild regularity conditions, this measure is bounded uniformly over the dimension of the sieve space. This finding is in stark contrast to the well‐known result that the unconstrained sieve measure of ill‐posedness that is relevant for the unconstrained estimator grows to infinity with the dimension of the sieve space. Based on this result, we derive a novel non‐asymptotic error bound for the constrained estimator. The bound gives a set of data‐generating processes for which the monotonicity constraint has a particularly strong regularization effect and considerably improves the performance of the estimator. The form of the bound implies that the regularization effect can be strong even in large samples and even if the function to be estimated is steep, particularly so if the NPIV model is severely ill‐posed. Our simulation study confirms these findings and reveals the potential for large performance gains from imposing the monotonicity constraint.  相似文献   

6.
This paper studies nonparametric estimation of conditional moment restrictions in which the generalized residual functions can be nonsmooth in the unknown functions of endogenous variables. This is a nonparametric nonlinear instrumental variables (IV) problem. We propose a class of penalized sieve minimum distance (PSMD) estimators, which are minimizers of a penalized empirical minimum distance criterion over a collection of sieve spaces that are dense in the infinite‐dimensional function parameter space. Some of the PSMD procedures use slowly growing finite‐dimensional sieves with flexible penalties or without any penalty; others use large dimensional sieves with lower semicompact and/or convex penalties. We establish their consistency and the convergence rates in Banach space norms (such as a sup‐norm or a root mean squared norm), allowing for possibly noncompact infinite‐dimensional parameter spaces. For both mildly and severely ill‐posed nonlinear inverse problems, our convergence rates in Hilbert space norms (such as a root mean squared norm) achieve the known minimax optimal rate for the nonparametric mean IV regression. We illustrate the theory with a nonparametric additive quantile IV regression. We present a simulation study and an empirical application of estimating nonparametric quantile IV Engel curves.  相似文献   

7.
We propose an estimation method for models of conditional moment restrictions, which contain finite dimensional unknown parameters (θ) and infinite dimensional unknown functions (h). Our proposal is to approximate h with a sieve and to estimate θ and the sieve parameters jointly by applying the method of minimum distance. We show that: (i) the sieve estimator of h is consistent with a rate faster than n‐1/4 under certain metric; (ii) the estimator of θ is √n consistent and asymptotically normally distributed; (iii) the estimator for the asymptotic covariance of the θ estimator is consistent and easy to compute; and (iv) the optimally weighted minimum distance estimator of θ attains the semiparametric efficiency bound. We illustrate our results with two examples: a partially linear regression with an endogenous nonparametric part, and a partially additive IV regression with a link function.  相似文献   

8.
In this paper, we provide efficient estimators and honest confidence bands for a variety of treatment effects including local average (LATE) and local quantile treatment effects (LQTE) in data‐rich environments. We can handle very many control variables, endogenous receipt of treatment, heterogeneous treatment effects, and function‐valued outcomes. Our framework covers the special case of exogenous receipt of treatment, either conditional on controls or unconditionally as in randomized control trials. In the latter case, our approach produces efficient estimators and honest bands for (functional) average treatment effects (ATE) and quantile treatment effects (QTE). To make informative inference possible, we assume that key reduced‐form predictive relationships are approximately sparse. This assumption allows the use of regularization and selection methods to estimate those relations, and we provide methods for post‐regularization and post‐selection inference that are uniformly valid (honest) across a wide range of models. We show that a key ingredient enabling honest inference is the use of orthogonal or doubly robust moment conditions in estimating certain reduced‐form functional parameters. We illustrate the use of the proposed methods with an application to estimating the effect of 401(k) eligibility and participation on accumulated assets. The results on program evaluation are obtained as a consequence of more general results on honest inference in a general moment‐condition framework, which arises from structural equation models in econometrics. Here, too, the crucial ingredient is the use of orthogonal moment conditions, which can be constructed from the initial moment conditions. We provide results on honest inference for (function‐valued) parameters within this general framework where any high‐quality, machine learning methods (e.g., boosted trees, deep neural networks, random forest, and their aggregated and hybrid versions) can be used to learn the nonparametric/high‐dimensional components of the model. These include a number of supporting auxiliary results that are of major independent interest: namely, we (1) prove uniform validity of a multiplier bootstrap, (2) offer a uniformly valid functional delta method, and (3) provide results for sparsity‐based estimation of regression functions for function‐valued outcomes.  相似文献   

9.
We propose a novel technique to boost the power of testing a high‐dimensional vector H : θ = 0 against sparse alternatives where the null hypothesis is violated by only a few components. Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers due to the accumulation of errors in estimating high‐dimensional parameters. More powerful tests for sparse alternatives such as thresholding and extreme value tests, on the other hand, require either stringent conditions or bootstrap to derive the null distribution and often suffer from size distortions due to the slow convergence. Based on a screening technique, we introduce a “power enhancement component,” which is zero under the null hypothesis with high probability, but diverges quickly under sparse alternatives. The proposed test statistic combines the power enhancement component with an asymptotically pivotal statistic, and strengthens the power under sparse alternatives. The null distribution does not require stringent regularity conditions, and is completely determined by that of the pivotal statistic. The proposed methods are then applied to testing the factor pricing models and validating the cross‐sectional independence in panel data models.  相似文献   

10.
Jump Regressions     
We develop econometric tools for studying jump dependence of two processes from high‐frequency observations on a fixed time interval. In this context, only segments of data around a few outlying observations are informative for the inference. We derive an asymptotically valid test for stability of a linear jump relation over regions of the jump size domain. The test has power against general forms of nonlinearity in the jump dependence as well as temporal instabilities. We further propose an efficient estimator for the linear jump regression model that is formed by optimally weighting the detected jumps with weights based on the diffusive volatility around the jump times. We derive the asymptotic limit of the estimator, a semiparametric lower efficiency bound for the linear jump regression, and show that our estimator attains the latter. The analysis covers both deterministic and random jump arrivals. In an empirical application, we use the developed inference techniques to test the temporal stability of market jump betas.  相似文献   

11.
This paper develops the fixed‐smoothing asymptotics in a two‐step generalized method of moments (GMM) framework. Under this type of asymptotics, the weighting matrix in the second‐step GMM criterion function converges weakly to a random matrix and the two‐step GMM estimator is asymptotically mixed normal. Nevertheless, the Wald statistic, the GMM criterion function statistic, and the Lagrange multiplier statistic remain asymptotically pivotal. It is shown that critical values from the fixed‐smoothing asymptotic distribution are high order correct under the conventional increasing‐smoothing asymptotics. When an orthonormal series covariance estimator is used, the critical values can be approximated very well by the quantiles of a noncentral F distribution. A simulation study shows that statistical tests based on the new fixed‐smoothing approximation are much more accurate in size than existing tests.  相似文献   

12.
This paper makes the following original contributions to the literature. (i) We develop a simpler analytical characterization and numerical algorithm for Bayesian inference in structural vector autoregressions (VARs) that can be used for models that are overidentified, just‐identified, or underidentified. (ii) We analyze the asymptotic properties of Bayesian inference and show that in the underidentified case, the asymptotic posterior distribution of contemporaneous coefficients in an n‐variable VAR is confined to the set of values that orthogonalize the population variance–covariance matrix of ordinary least squares residuals, with the height of the posterior proportional to the height of the prior at any point within that set. For example, in a bivariate VAR for supply and demand identified solely by sign restrictions, if the population correlation between the VAR residuals is positive, then even if one has available an infinite sample of data, any inference about the demand elasticity is coming exclusively from the prior distribution. (iii) We provide analytical characterizations of the informative prior distributions for impulse‐response functions that are implicit in the traditional sign‐restriction approach to VARs, and we note, as a special case of result (ii), that the influence of these priors does not vanish asymptotically. (iv) We illustrate how Bayesian inference with informative priors can be both a strict generalization and an unambiguous improvement over frequentist inference in just‐identified models. (v) We propose that researchers need to explicitly acknowledge and defend the role of prior beliefs in influencing structural conclusions and we illustrate how this could be done using a simple model of the U.S. labor market.  相似文献   

13.
We demonstrate the asymptotic equivalence between commonly used test statistics for out‐of‐sample forecasting performance and conventional Wald statistics. This equivalence greatly simplifies the computational burden of calculating recursive out‐of‐sample test statistics and their critical values. For the case with nested models, we show that the limit distribution, which has previously been expressed through stochastic integrals, has a simple representation in terms of χ2‐distributed random variables and we derive its density. We also generalize the limit theory to cover local alternatives and characterize the power properties of the test.  相似文献   

14.
This paper develops an asymptotic theory of inference for an unrestricted two‐regime threshold autoregressive (TAR) model with an autoregressive unit root. We find that the asymptotic null distribution of Wald tests for a threshold are nonstandard and different from the stationary case, and suggest basing inference on a bootstrap approximation. We also study the asymptotic null distributions of tests for an autoregressive unit root, and find that they are nonstandard and dependent on the presence of a threshold effect. We propose both asymptotic and bootstrap‐based tests. These tests and distribution theory allow for the joint consideration of nonlinearity (thresholds) and nonstationary (unit roots). Our limit theory is based on a new set of tools that combine unit root asymptotics with empirical process methods. We work with a particular two‐parameter empirical process that converges weakly to a two‐parameter Brownian motion. Our limit distributions involve stochastic integrals with respect to this two‐parameter process. This theory is entirely new and may find applications in other contexts. We illustrate the methods with an application to the U.S. monthly unemployment rate. We find strong evidence of a threshold effect. The point estimates suggest that the threshold effect is in the short‐run dynamics, rather than in the dominate root. While the conventional ADF test for a unit root is insignificant, our TAR unit root tests are arguably significant. The evidence is quite strong that the unemployment rate is not a unit root process, and there is considerable evidence that the series is a stationary TAR process.  相似文献   

15.
I introduce a model of undirected dyadic link formation which allows for assortative matching on observed agent characteristics (homophily) as well as unrestricted agent‐level heterogeneity in link surplus (degree heterogeneity). Like in fixed effects panel data analyses, the joint distribution of observed and unobserved agent‐level characteristics is left unrestricted. Two estimators for the (common) homophily parameter, β0, are developed and their properties studied under an asymptotic sequence involving a single network growing large. The first, tetrad logit (TL), estimator conditions on a sufficient statistic for the degree heterogeneity. The second, joint maximum likelihood (JML), estimator treats the degree heterogeneity {Ai0}i = 1N as additional (incidental) parameters to be estimated. The TL estimate is consistent under both sparse and dense graph sequences, whereas consistency of the JML estimate is shown only under dense graph sequences.  相似文献   

16.
In this paper, we study the least squares (LS) estimator in a linear panel regression model with unknown number of factors appearing as interactive fixed effects. Assuming that the number of factors used in estimation is larger than the true number of factors in the data, we establish the limiting distribution of the LS estimator for the regression coefficients as the number of time periods and the number of cross‐sectional units jointly go to infinity. The main result of the paper is that under certain assumptions, the limiting distribution of the LS estimator is independent of the number of factors used in the estimation as long as this number is not underestimated. The important practical implication of this result is that for inference on the regression coefficients, one does not necessarily need to estimate the number of interactive fixed effects consistently.  相似文献   

17.
This paper establishes the higher‐order equivalence of the k‐step bootstrap, introduced recently by Davidson and MacKinnon (1999), and the standard bootstrap. The k‐step bootstrap is a very attractive alternative computationally to the standard bootstrap for statistics based on nonlinear extremum estimators, such as generalized method of moment and maximum likelihood estimators. The paper also extends results of Hall and Horowitz (1996) to provide new results regarding the higher‐order improvements of the standard bootstrap and the k‐step bootstrap for extremum estimators (compared to procedures based on first‐order asymptotics). The results of the paper apply to Newton‐Raphson (NR), default NR, line‐search NR, and Gauss‐Newton k‐step bootstrap procedures. The results apply to the nonparametric iid bootstrap and nonoverlapping and overlapping block bootstraps. The results cover symmetric and equal‐tailed two‐sided t tests and confidence intervals, one‐sided t tests and confidence intervals, Wald tests and confidence regions, and J tests of over‐identifying restrictions.  相似文献   

18.
This paper provides positive testability results for the identification condition in a nonparametric instrumental variable model, known as completeness, and it links the outcome of the test to properties of an estimator of the structural function. In particular, I show that the data can provide empirical evidence in favor of both an arbitrarily small identified set as well as an arbitrarily small asymptotic bias of the estimator. This is the case for a large class of complete distributions as well as certain incomplete distributions. As a byproduct, the results can be used to estimate an upper bound of the diameter of the identified set and to obtain an easy to report estimator of the identified set itself.  相似文献   

19.
This note studies some seemingly anomalous results that arise in possibly misspecified, reduced‐rank linear asset‐pricing models estimated by the continuously updated generalized method of moments. When a spurious factor (that is, a factor that is uncorrelated with the returns on the test assets) is present, the test for correct model specification has asymptotic power that is equal to the nominal size. In other words, applied researchers will erroneously conclude that the model is correctly specified even when the degree of misspecification is arbitrarily large. The rejection probability of the test for overidentifying restrictions typically decreases further in underidentified models where the dimension of the null space is larger than 1.  相似文献   

20.
We introduce methods for estimating nonparametric, nonadditive models with simultaneity. The methods are developed by directly connecting the elements of the structural system to be estimated with features of the density of the observable variables, such as ratios of derivatives or averages of products of derivatives of this density. The estimators are therefore easily computed functionals of a nonparametric estimator of the density of the observable variables. We consider in detail a model where to each structural equation there corresponds an exclusive regressor and a model with one equation of interest and one instrument that is included in a second equation. For both models, we provide new characterizations of observational equivalence on a set, in terms of the density of the observable variables and derivatives of the structural functions. Based on those characterizations, we develop two estimation methods. In the first method, the estimators of the structural derivatives are calculated by a simple matrix inversion and matrix multiplication, analogous to a standard least squares estimator, but with the elements of the matrices being averages of products of derivatives of nonparametric density estimators. In the second method, the estimators of the structural derivatives are calculated in two steps. In a first step, values of the instrument are found at which the density of the observable variables satisfies some properties. In the second step, the estimators are calculated directly from the values of derivatives of the density of the observable variables evaluated at the found values of the instrument. We show that both pointwise estimators are consistent and asymptotically normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号