首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents a class of estimators for linear structural models that are robust to heavytailed disturbance distributions, gross errors in either the endogenous or exogenous variables, and certain other model failures. The class of estimators modifies ordinary two-stage least squares by replacing each least squares regression by a bounded-influence regression. Conditions under which the estimators are qualitatively robust, consistent, and asymptotically normal are established, and an empirical example is presented.  相似文献   

2.
In this paper, assuming that there exist omitted explanatory variables in the specified model, we derive the exact formula for the mean squared error (MSE) of a general family of shrinkage estimators for each individual regression coefficient. It is shown analytically that when our concern is to estimate each individual regression coefficient, the positive-part shrinkage estimators have smaller MSE than the original shrinkage estimators under some conditions even when the relevant regressors are omitted. Also, by numerical evaluations, we showed the effects of our theorem for several specific cases. It is shown that the positive-part shrinkage estimators have smaller MSE than the original shrinkage estimators for wide region of parameter space even when there exist omitted variables in the specified model.  相似文献   

3.
A class of trimmed linear conditional estimators based on regression quantiles for the linear regression model is introduced. This class serves as a robust analogue of non-robust linear unbiased estimators. Asymptotic analysis then shows that the trimmed least squares estimator based on regression quantiles ( Koenker and Bassett ( 1978 ) ) is the best in this estimator class in terms of asymptotic covariance matrices. The class of trimmed linear conditional estimators contains the Mallows-type bounded influence trimmed means ( see De Jongh et al ( 1988 ) ) and trimmed instrumental variables estimators. A large sample methodology based on trimmed instrumental variables estimator for confidence ellipsoids and hypothesis testing is also provided.  相似文献   

4.
In high-dimensional regression problems regularization methods have been a popular choice to address variable selection and multicollinearity. In this paper we study bridge regression that adaptively selects the penalty order from data and produces flexible solutions in various settings. We implement bridge regression based on the local linear and quadratic approximations to circumvent the nonconvex optimization problem. Our numerical study shows that the proposed bridge estimators are a robust choice in various circumstances compared to other penalized regression methods such as the ridge, lasso, and elastic net. In addition, we propose group bridge estimators that select grouped variables and study their asymptotic properties when the number of covariates increases along with the sample size. These estimators are also applied to varying-coefficient models. Numerical examples show superior performances of the proposed group bridge estimators in comparisons with other existing methods.  相似文献   

5.
In a cocaine dependence treatment study, we use linear and nonlinear regression models to model posttreatment cocaine craving scores and first cocaine relapse time. A subset of the covariates are summary statistics derived from baseline daily cocaine use trajectories, such as baseline cocaine use frequency and average daily use amount. These summary statistics are subject to estimation error and can therefore cause biased estimators for the regression coefficients. Unlike classical measurement error problems, the error we encounter here is heteroscedastic with an unknown distribution, and there are no replicates for the error-prone variables or instrumental variables. We propose two robust methods to correct for the bias: a computationally efficient method-of-moments-based method for linear regression models and a subsampling extrapolation method that is generally applicable to both linear and nonlinear regression models. Simulations and an application to the cocaine dependence treatment data are used to illustrate the efficacy of the proposed methods. Asymptotic theory and variance estimation for the proposed subsampling extrapolation method and some additional simulation results are described in the online supplementary material.  相似文献   

6.
New robust estimates for variance components are introduced. Two simple models are considered: the balanced one-way classification model with a random factor and the balanced mixed model with one random factor and one fixed factor. However, the method of estimation proposed can be extended to more complex models. The new method of estimation we propose is based on the relationship between the variance components and the coefficients of the least-mean-squared-error predictor between two observations of the same group. This relationship enables us to transform the problem of estimating the variance components into the problem of estimating the coefficients of a simple linear regression model. The variance-component estimators derived from the least-squares regression estimates are shown to coincide with the maximum-likelihood estimates. Robust estimates of the variance components can be obtained by replacing the least-squares estimates by robust regression estimates. In particular, a Monte Carlo study shows that for outlier-contaminated normal samples, the estimates of variance components derived from GM regression estimates and the derived test outperform other robust procedures.  相似文献   

7.
Fast and robust bootstrap   总被引:1,自引:0,他引:1  
In this paper we review recent developments on a bootstrap method for robust estimators which is computationally faster and more resistant to outliers than the classical bootstrap. This fast and robust bootstrap method is, under reasonable regularity conditions, asymptotically consistent. We describe the method in general and then consider its application to perform inference based on robust estimators for the linear regression and multivariate location-scatter models. In particular, we study confidence and prediction intervals and tests of hypotheses for linear regression models, inference for location-scatter parameters and principal components, and classification error estimation for discriminant analysis.  相似文献   

8.
This article is designed to point out the close connection between recursive estimation procedures, such as Kalman filter theory, familiar to control engineers, and linear least squares estimators and estimators that include prior information in the form of linear restrictions, such as mixed estimators and ridge estimators, familiar to statisticians. The only difference between the two points of view seems to be a difference in terminology. To demonstrate this point, it is shown how the Kalman filter equations can be derived from an existing textbook account of linear least squares theory and the notion of combining prior information in linear models, that is, the Goldberger—Theil mixed estimators' point of view. The author advocates the inclusion of these ideas early when least squares estimation concepts are being taught.  相似文献   

9.
10.
Mixture regression models are used to investigate the relationship between variables that come from unknown latent groups and to model heterogenous datasets. In general, the error terms are assumed to be normal in the mixture regression model. However, the estimators under normality assumption are sensitive to the outliers. In this article, we introduce a robust mixture regression procedure based on the LTS-estimation method to combat with the outliers in the data. We give a simulation study and a real data example to illustrate the performance of the proposed estimators over the counterparts in terms of dealing with outliers.  相似文献   

11.
In this article, we suggest simple moment-based estimators to deal with unobserved heterogeneity in a special class of nonlinear regression models that includes as main particular cases exponential models for nonnegative responses and logit and complementary loglog models for fractional responses. The proposed estimators: (i) treat observed and omitted covariates in a similar manner; (ii) can deal with boundary outcomes; (iii) accommodate endogenous explanatory variables without requiring knowledge on the reduced form model, although such information may be easily incorporated in the estimation process; (iv) do not require distributional assumptions on the unobservables, a conditional mean assumption being enough for consistent estimation of the structural parameters; and (v) under the additional assumption that the dependence between observables and unobservables is restricted to the conditional mean, produce consistent estimators of partial effects conditional only on observables.  相似文献   

12.
In a simple multiple linear regression model, the design variables have traditionally been assumed to be non-stochastic. In numerous real-life situations, however, they are stochastic and non-normal. Estimators of parameters applicable to such situations are developed. It is shown that these estimators are efficient and robust. A real-life example is given.  相似文献   

13.
In this article, we develop a local M-estimation for the conditional variance in heteroscedastic regression models. The estimator is based on the local linear smoothing technique and the M-estimation technique, and it is shown to be not only asymptotically equivalent to the local linear estimator but also robust. The consistency and asymptotic normality of the local M-estimator for the conditional variance in heteroscedastic regression models are obtained under mild conditions. The simulation studies demonstrate that the proposed estimators perform well in robustness.  相似文献   

14.
This paper proposes robust regression to solve the problem of outliers in seemingly unrelated regression (SUR) models. The authors present an adaptation of S‐estimators to SUR models. S‐estimators are robust, have a high breakdown point and are much more efficient than other robust regression estimators commonly used in practice. Furthermore, modifications to Ruppert's algorithm allow a fast evaluation of them in this context. The classical example of U.S. corporations is revisited, and it appears that the procedure gives an interesting insight into the problem.  相似文献   

15.
Mixed effects models and Berkson measurement error models are widely used. They share features which the author uses to develop a unified estimation framework. He deals with models in which the random effects (or measurement errors) have a general parametric distribution, whereas the random regression coefficients (or unobserved predictor variables) and error terms have nonparametric distributions. He proposes a second-order least squares estimator and a simulation-based estimator based on the first two moments of the conditional response variable given the observed covariates. He shows that both estimators are consistent and asymptotically normally distributed under fairly general conditions. The author also reports Monte Carlo simulation studies showing that the proposed estimators perform satisfactorily for relatively small sample sizes. Compared to the likelihood approach, the proposed methods are computationally feasible and do not rely on the normality assumption for random effects or other variables in the model.  相似文献   

16.
Quantitative traits measured over pedigrees of individuals may be analysed using maximum likelihood estimation, assuming that the trait has a multivariate normal distribution. This approach is often used in the analysis of mixed linear models. In this paper a robust version of the log likelihood for multivariate normal data is used to construct M-estimators which are resistant to contamination by outliers. The robust estimators are found using a minimisation routine which retains the flexible parameterisations of the multivariate normal approach. Asymptotic properties of the estimators are derived, computation of the estimates and their use in outlier detection tests are discussed, and a small simulation study is conducted.  相似文献   

17.
This paper focuses on robust estimation and variable selection for partially linear models. We combine the weighted least absolute deviation (WLAD) regression with the adaptive least absolute shrinkage and selection operator (LASSO) to achieve simultaneous robust estimation and variable selection for partially linear models. Compared with the LAD-LASSO method, the WLAD-LASSO method will resist to the heavy-tailed errors and outliers in the parametric components. In addition, we estimate the unknown smooth function by a robust local linear regression. Under some regular conditions, the theoretical properties of the proposed estimators are established. We further examine finite-sample performance of the proposed procedure by simulation studies and a real data example.  相似文献   

18.
The autoregressive model for cointegrated variables is analyzed with respect to the role of the constant and linear terms. Various models for 1(1) variables defined by restrictions on the deterministic terms are discussed, and it is shown that statistical inference can be performed by reduced rank regression. The asymptotic distributions of the test statistics and estimators are found. A similar analysis is given for models for 1(2) variables with a constant term.  相似文献   

19.
The autoregressive model for cointegrated variables is analyzed with respect to the role of the constant and linear terms. Various models for 1(1) variables defined by restrictions on the deterministic terms are discussed, and it is shown that statistical inference can be performed by reduced rank regression. The asymptotic distributions of the test statistics and estimators are found. A similar analysis is given for models for 1(2) variables with a constant term.  相似文献   

20.
Many different biased regression techniques have been proposed for estimating parameters of a multiple linear regression model when the predictor variables are collinear. One particular alternative, latent root regression analysis, is a technique based on analyzing the latent roots and latent vectors of the correlation matrix of both the response and the predictor variables. It is the purpose of this paper to review the latent root regression estimator and to re-examine some of its properties and applications. It is shown that the latent root estimator is a member of a wider class of estimators for linear models  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号