首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we have discussed inference aspects of the skew-normal nonlinear regression models following both, a classical and Bayesian approach, extending the usual normal nonlinear regression models. The univariate skew-normal distribution that will be used in this work was introduced by Sahu et al. (Can J Stat 29:129–150, 2003), which is attractive because estimation of the skewness parameter does not present the same degree of difficulty as in the case with Azzalini (Scand J Stat 12:171–178, 1985) one and, moreover, it allows easy implementation of the EM-algorithm. As illustration of the proposed methodology, we consider a data set previously analyzed in the literature under normality.  相似文献   

2.
The main object of this paper is to propose a multivariate extension to the alpha-power model which is an alternative to the multivariate skew-normal model (Arellano-Valle and Azzalini, 2008). It also extends the power-normal model discussed in Gupta and Gupta (2008) by making it more flexible. Inference is dealt with by using the likelihood approach and a pseudo-likelihood approach based on conditional distributions which, although slightly less efficient, is simpler to implement. An application to a real data set is used to demonstrate the usefulness of the extension.  相似文献   

3.
We consider here a generalization of the skew-normal distribution, GSN(λ1,λ2,ρ), defined through a standard bivariate normal distribution with correlation ρ, which is a special case of the unified multivariate skew-normal distribution studied recently by Arellano-Valle and Azzalini [2006. On the unification of families of skew-normal distributions. Scand. J. Statist. 33, 561–574]. We then present some simple and useful properties of this distribution and also derive its moment generating function in an explicit form. Next, we show that distributions of order statistics from the trivariate normal distribution are mixtures of these generalized skew-normal distributions; thence, using the established properties of the generalized skew-normal distribution, we derive the moment generating functions of order statistics, and also present expressions for means and variances of these order statistics.Next, we introduce a generalized skew-tν distribution, which is a special case of the unified multivariate skew-elliptical distribution presented by Arellano-Valle and Azzalini [2006. On the unification of families of skew-normal distributions. Scand. J. Statist. 33, 561–574] and is in fact a three-parameter generalization of Azzalini and Capitanio's [2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J. Roy. Statist. Soc. Ser. B 65, 367–389] univariate skew-tν form. We then use the relationship between the generalized skew-normal and skew-tν distributions to discuss some properties of generalized skew-tν as well as distributions of order statistics from bivariate and trivariate tν distributions. We show that these distributions of order statistics are indeed mixtures of generalized skew-tν distributions, and then use this property to derive explicit expressions for means and variances of these order statistics.  相似文献   

4.
Abstract

The most commonly studied generalized normal distribution is the well-known skew-normal by Azzalini. In this paper, a new generalized normal distribution is defined and studied. The distribution is unimodal and it can be skewed right or left. The relationships between the parameters and the mean, variance, skewness, and kurtosis are discussed. It is observed that the new distribution has a much wider range of skewness and kurtosis than the skew-normal distribution. The method of maximum likelihood is proposed to estimate the distribution parameters. Two real data sets are applied to illustrate the flexibility of the distribution.  相似文献   

5.
Debasis Kundu 《Statistics》2017,51(6):1377-1397
Azzalini [A class of distributions which include the normal. Scand J Stat. 1985;12:171–178] introduced a skew-normal distribution of which normal distribution is a special case. Recently, Kundu [Geometric skew normal distribution. Sankhya Ser B. 2014;76:167–189] introduced a geometric skew-normal distribution and showed that it has certain advantages over Azzalini's skew-normal distribution. In this paper we discuss about the multivariate geometric skew-normal (MGSN) distribution. It can be used as an alternative to Azzalini's skew-normal distribution. We discuss different properties of the proposed distribution. It is observed that the joint probability density function of the MGSN distribution can take a variety of shapes. Several characterization results have been established. Generation from an MGSN distribution is quite simple, hence the simulation experiments can be performed quite easily. The maximum likelihood estimators of the unknown parameters can be obtained quite conveniently using the expectation–maximization (EM) algorithm. We perform some simulation experiments and it is observed that the performances of the proposed EM algorithm are quite satisfactory. Furthermore, the analyses of two data sets have been performed, and it is observed that the proposed methods and the model work very well.  相似文献   

6.
The construction of regions with assigned probability p and minimum geometric measure has theoretical and practical interests, such as the construction of tolerance regions. Following Azzalini (2001 Azzalini, A. (2001). A note on regions of given probability of the skew-normal distribution. Metron 59(3-4): 2734. [Google Scholar]) and exploiting the normal approximation of the extended skew-normal distribution when some of its parameters go to infinity, we discuss an approach for the construction of regions with assigned probability p for the bivariate extended skew-normal distribution.  相似文献   

7.
A broad spectrum of flexible univariate and multivariate models can be constructed by using a hidden truncation paradigm. Such models can be viewed as being characterized by a basic marginal density, a family of conditional densities and a specified hidden truncation point, or points. The resulting class of distributions includes the basic marginal density as a special case (or as a limiting case), but also includes an array of models that may unexpectedly include many well known densities. Most of the well known skew-normal models (developed from the seed distribution popularized by Azzalini [(1985). A class of distributions which includes the normal ones. Scand. J. Statist. 12(2), 171–178]) can be viewed as being products of such a hidden truncation construction. However, the many hidden truncation models with non-normal component densities undoubtedly deserve further attention.  相似文献   

8.
Partially linear models (PLMs) are an important tool in modelling economic and biometric data and are considered as a flexible generalization of the linear model by including a nonparametric component of some covariate into the linear predictor. Usually, the error component is assumed to follow a normal distribution. However, the theory and application (through simulation or experimentation) often generate a great amount of data sets that are skewed. The objective of this paper is to extend the PLMs allowing the errors to follow a skew-normal distribution [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178], increasing the flexibility of the model. In particular, we develop the expectation-maximization (EM) algorithm for linear regression models and diagnostic analysis via local influence as well as generalized leverage, following [H. Zhu and S. Lee, Local influence for incomplete-data models, J. R. Stat. Soc. Ser. B 63 (2001), pp. 111–126]. A simulation study is also conducted to evaluate the efficiency of the EM algorithm. Finally, a suitable transformation is applied in a data set on ragweed pollen concentration in order to fit PLMs under asymmetric distributions. An illustrative comparison is performed between normal and skew-normal errors.  相似文献   

9.
We introduce a new family of skew-normal distributions that contains the skew-normal distributions introduced by Azzalini (Scand J Stat 12:171–178, 1985), Arellano-Valle et al. (Commun Stat Theory Methods 33(7):1465–1480, 2004), Gupta and Gupta (Test 13(2):501–524, 2008) and Sharafi and Behboodian (Stat Papers, 49:769–778, 2008). We denote this distribution by GBSN n 1, λ2). We present some properties of GBSN n 1, λ2) and derive the moment generating function. Finally, we use two numerical examples to illustrate the practical usefulness of this distribution.  相似文献   

10.
Traditional factor analysis (FA) rests on the assumption of multivariate normality. However, in some practical situations, the data do not meet this assumption; thus, the statistical inference made from such data may be misleading. This paper aims at providing some new tools for the skew-normal (SN) FA model when missing values occur in the data. In such a model, the latent factors are assumed to follow a restricted version of multivariate SN distribution with additional shape parameters for accommodating skewness. We develop an analytically feasible expectation conditional maximization algorithm for carrying out parameter estimation and imputation of missing values under missing at random mechanisms. The practical utility of the proposed methodology is illustrated with two real data examples and the results are compared with those obtained from the traditional FA counterparts.  相似文献   

11.
The standard location and scale unrestricted (or unified) skew-normal (SUN) family studied by Arellano-Valle and Genton [On fundamental skew distributions. J Multivar Anal. 2005;96:93–116] and Arellano-Valle and Azzalini [On the unification of families of skew-normal distributions. Scand J Stat. 2006;33:561–574], allows the modelling of data which is symmetrically or asymmetrically distributed. The family has a number of advantages suitable for the analysis of stochastic processes such as Auto-Regressive Moving-Average (ARMA) models, including being closed under linear combinations, being able to satisfy the consistency condition of Kolmogorov’s theorem and providing the guarantee of the existence of such a SUN stochastic process. The family is able to be represented in a hierarchical form which can be used for the ease of simulation. In addition, it facilitates an EM-type algorithm to estimate the model parameters. The performances and suitability of the proposed model are demonstrated on simulations and using two real data sets in applications.  相似文献   

12.
In this article, we introduce a new family of asymmetric distributions, which depends on two parameters namely, α and β, and in the special case where β = 0, the skew-normal (SN) distribution considered by Azzallini [Azzalini, A., 1985, A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171–178.] is obtained. Basic properties such as a stochastic representation and the derivation of maximum likelihood and moment estimators are studied. The asymptotic behaviour of both types of estimators is also investigated. Results of a small-scale simulation study is provided illustrating the usefulness of the new model. An application to a real data set is reported showing that it can present better fit than the SN distribution.  相似文献   

13.
Bayesian inference under the skew-normal family of distributions is discussed using an arbitrary proper prior for the skewness parameter. In particular, we review some results when a skew-normal prior distribution is considered. Considering this particular prior, we provide a stochastic representation of the posterior of the skewness parameter. Moreover, we obtain analytical expressions for the posterior mean and variance of the skewness parameter. The ultimate goal is to consider these results to one change point identification in the parameters of the location-scale skew-normal model. Some Latin American emerging market datasets are used to illustrate the methodology developed in this work.  相似文献   

14.
15.
In practice, a financial or actuarial data set may be a skewed or heavy-tailed and this motivates us to study a class of distribution functions in risk management theory that provide more information about these characteristics resulting in a more accurate risk analysis. In this paper, we consider a multivariate tail conditional expectation (MTCE) for multivariate scale mixtures of skew-normal (SMSN) distributions. This class of distributions contains skewed distributions and some members of this class can be used to analyse heavy-tailed data sets. We also provide a closed form for TCE in a univariate skew-normal distribution framework. Numerical examples are also provided for illustration.  相似文献   

16.
In this article, utilizing a scale mixture of skew-normal distribution in which mixing random variable is assumed to follow a mixture model with varying weights for each observation, we introduce a generalization of skew-normal linear regression model with the aim to provide resistant results. This model, which also includes the skew-slash distribution in a particular case, allows us to accommodate and detect outlying observations under the skew-normal linear regression model. Inferences about the model are carried out through the empirical Bayes approach. The conditions for propriety of the posterior and for existence of posterior moments are given under the standard noninformative priors for regression and scale parameters as well as proper prior for skewness parameter. Then, for Bayesian inference, a Markov chain Monte Carlo method is described. Since posterior results depend on the prior hyperparameters, we estimate them adopting the empirical Bayes method as well as using a Monte Carlo EM algorithm. Furthermore, to identify possible outliers, we also apply the Bayes factor obtained through the generalized Savage-Dickey density ratio. Examining the proposed approach on simulated instance and real data, it is found to provide not only satisfactory parameter estimates rather allow identifying outliers favorably.  相似文献   

17.

In this paper, we introduce an unrestricted skew-normal generalized hyperbolic (SUNGH) distribution for use in finite mixture modeling or clustering problems. The SUNGH is a broad class of flexible distributions that includes various other well-known asymmetric and symmetric families such as the scale mixtures of skew-normal, the skew-normal generalized hyperbolic and its corresponding symmetric versions. The class of distributions provides a much needed unified framework where the choice of the best fitting distribution can proceed quite naturally through either parameter estimation or by placing constraints on specific parameters and assessing through model choice criteria. The class has several desirable properties, including an analytically tractable density and ease of computation for simulation and estimation of parameters. We illustrate the flexibility of the proposed class of distributions in a mixture modeling context using a Bayesian framework and assess the performance using simulated and real data.

  相似文献   

18.
19.
The dynamic properties and independence structure of stochastic kinetic models (SKMs) are analyzed. An SKM is a highly multivariate jump process used to model chemical reaction networks, particularly those in biochemical and cellular systems. We identify SKM subprocesses with the corresponding counting processes and propose a directed, cyclic graph (the kinetic independence graph or KIG) that encodes the local independence structure of their conditional intensities. Given a partition [A, D, B] of the vertices, the graphical separation A ⊥ B|D in the undirected KIG has an intuitive chemical interpretation and implies that A is locally independent of B given A ∪ D. It is proved that this separation also results in global independence of the internal histories of A and B conditional on a history of the jumps in D which, under conditions we derive, corresponds to the internal history of D. The results enable mathematical definition of a modularization of an SKM using its implied dynamics. Graphical decomposition methods are developed for the identification and efficient computation of nested modularizations. Application to an SKM of the red blood cell advances understanding of this biochemical system.  相似文献   

20.
Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is an interest in studying latent variables (or latent traits). Usually such latent traits are assumed to be random variables and a convenient distribution is assigned to them. A very common choice for such a distribution has been the standard normal. Recently, Azevedo et al. [Bayesian inference for a skew-normal IRT model under the centred parameterization, Comput. Stat. Data Anal. 55 (2011), pp. 353–365] proposed a skew-normal distribution under the centred parameterization (SNCP) as had been studied in [R.B. Arellano-Valle and A. Azzalini, The centred parametrization for the multivariate skew-normal distribution, J. Multivariate Anal. 99(7) (2008), pp. 1362–1382], to model the latent trait distribution. This approach allows one to represent any asymmetric behaviour concerning the latent trait distribution. Also, they developed a Metropolis–Hastings within the Gibbs sampling (MHWGS) algorithm based on the density of the SNCP. They showed that the algorithm recovers all parameters properly. Their results indicated that, in the presence of asymmetry, the proposed model and the estimation algorithm perform better than the usual model and estimation methods. Our main goal in this paper is to propose another type of MHWGS algorithm based on a stochastic representation (hierarchical structure) of the SNCP studied in [N. Henze, A probabilistic representation of the skew-normal distribution, Scand. J. Statist. 13 (1986), pp. 271–275]. Our algorithm has only one Metropolis–Hastings step, in opposition to the algorithm developed by Azevedo et al., which has two such steps. This not only makes the implementation easier but also reduces the number of proposal densities to be used, which can be a problem in the implementation of MHWGS algorithms, as can be seen in [R.J. Patz and B.W. Junker, A straightforward approach to Markov Chain Monte Carlo methods for item response models, J. Educ. Behav. Stat. 24(2) (1999), pp. 146–178; R.J. Patz and B.W. Junker, The applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses, J. Educ. Behav. Stat. 24(4) (1999), pp. 342–366; A. Gelman, G.O. Roberts, and W.R. Gilks, Efficient Metropolis jumping rules, Bayesian Stat. 5 (1996), pp. 599–607]. Moreover, we consider a modified beta prior (which generalizes the one considered in [3 Azevedo, C. L.N., Bolfarine, H. and Andrade, D. F. 2011. Bayesian inference for a skew-normal IRT model under the centred parameterization. Comput. Stat. Data Anal., 55: 353365. [Crossref], [Web of Science ®] [Google Scholar]]) and a Jeffreys prior for the asymmetry parameter. Furthermore, we study the sensitivity of such priors as well as the use of different kernel densities for this parameter. Finally, we assess the impact of the number of examinees, number of items and the asymmetry level on the parameter recovery. Results of the simulation study indicated that our approach performed equally as well as that in [3 Azevedo, C. L.N., Bolfarine, H. and Andrade, D. F. 2011. Bayesian inference for a skew-normal IRT model under the centred parameterization. Comput. Stat. Data Anal., 55: 353365. [Crossref], [Web of Science ®] [Google Scholar]], in terms of parameter recovery, mainly using the Jeffreys prior. Also, they indicated that the asymmetry level has the highest impact on parameter recovery, even though it is relatively small. A real data analysis is considered jointly with the development of model fitting assessment tools. The results are compared with the ones obtained by Azevedo et al. The results indicate that using the hierarchical approach allows us to implement MCMC algorithms more easily, it facilitates diagnosis of the convergence and also it can be very useful to fit more complex skew IRT models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号