首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The excess of zeros is not a rare feature in count data. Statisticians advocate the Poisson-type hurdle model (among other techniques) as an interesting approach to handle this data peculiarity. However, the frequency of gross errors and the complexity intrinsic to some considered phenomena may render this classical model unreliable and too limiting. In this paper, we develop a robust version of the Poisson hurdle model by extending the robust procedure for GLM of Cantoni and Ronchetti (2001) to the truncated Poisson regression model. The performance of the new robust approach is then investigated via a simulation study, a real data application and a sensitivity analysis. The results show the reliability of the new technique in the neighborhood of the truncated Poisson model. This robust modelling approach is therefore a valuable complement to the classical one, providing a tool for reliable statistical conclusions and to take more effective decisions.  相似文献   

2.
Modelling count data with overdispersion and spatial effects   总被引:1,自引:1,他引:0  
In this paper we consider regression models for count data allowing for overdispersion in a Bayesian framework. We account for unobserved heterogeneity in the data in two ways. On the one hand, we consider more flexible models than a common Poisson model allowing for overdispersion in different ways. In particular, the negative binomial and the generalized Poisson (GP) distribution are addressed where overdispersion is modelled by an additional model parameter. Further, zero-inflated models in which overdispersion is assumed to be caused by an excessive number of zeros are discussed. On the other hand, extra spatial variability in the data is taken into account by adding correlated spatial random effects to the models. This approach allows for an underlying spatial dependency structure which is modelled using a conditional autoregressive prior based on Pettitt et al. in Stat Comput 12(4):353–367, (2002). In an application the presented models are used to analyse the number of invasive meningococcal disease cases in Germany in the year 2004. Models are compared according to the deviance information criterion (DIC) suggested by Spiegelhalter et al. in J R Stat Soc B64(4):583–640, (2002) and using proper scoring rules, see for example Gneiting and Raftery in Technical Report no. 463, University of Washington, (2004). We observe a rather high degree of overdispersion in the data which is captured best by the GP model when spatial effects are neglected. While the addition of spatial effects to the models allowing for overdispersion gives no or only little improvement, spatial Poisson models with spatially correlated or uncorrelated random effects are to be preferred over all other models according to the considered criteria.  相似文献   

3.
The zero-inflated regression models such as zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB) or zero-inflated generalized Poisson (ZIGP) regression models can model the count data with excess zeros. The ZINB model can handle over-dispersed and the ZIGP model can handle the over or under-dispersed count data with excess zeros as well. Moreover, the count data may be correlated because of data collection procedure or special study design. The clustered sampling approach is one of the examples in which the correlation among subjects could be defined. In such situations, a marginal model using generalized estimating equation (GEE) approach can incorporate these correlations and lead up to the relationships at the population level. In this study, the GEE-based zero-inflated generalized Poisson regression model was proposed to fit over and under-dispersed clustered count data with excess zeros.  相似文献   

4.
Overdispersion is a common phenomenon in Poisson modeling. The generalized Poisson (GP) regression model accommodates both overdispersion and underdispersion in count data modeling, and is an increasingly popular platform for modeling overdispersed count data. The Poisson model is one of the special cases in the collection of models which may be specified by GP regression. Thus, we may derive a test of overdispersion which compares the equi-dispersion Poisson model within the context of the more general GP regression model. The score test has an advantage over the likelihood ratio test (LRT) and over the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis (the Poisson model). Herein, we propose a score test for overdispersion based on the GP model (specifically the GP-2 model) and compare the power of the test with the LRT and Wald tests. A simulation study indicates the proposed score test based on asymptotic standard normal distribution is more appropriate in practical applications.  相似文献   

5.
In this study, we deal with the problem of overdispersion beyond extra zeros for a collection of counts that can be correlated. Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial distributions have been considered. First, we propose a multivariate count model in which all counts follow the same distribution and are correlated. Then we extend this model in a sense that correlated counts may follow different distributions. To accommodate correlation among counts, we have considered correlated random effects for each individual in the mean structure, thus inducing dependency among common observations to an individual. The method is applied to real data to investigate variation in food resources use in a species of marsupial in a locality of the Brazilian Cerrado biome.  相似文献   

6.
Count data analysis techniques have been developed in biological and medical research areas. In particular, zero-inflated versions of parametric count distributions have been used to model excessive zeros that are often present in these assays. The most common count distributions for analyzing such data are Poisson and negative binomial. However, a Poisson distribution can only handle equidispersed data and a negative binomial distribution can only cope with overdispersion. However, a Conway–Maxwell–Poisson (CMP) distribution [4] can handle a wide range of dispersion. We show, with an illustrative data set on next-generation sequencing of maize hybrids, that both underdispersion and overdispersion can be present in genomic data. Furthermore, the maize data set consists of clustered observations and, therefore, we develop inference procedures for a zero-inflated CMP regression that incorporates a cluster-specific random effect term. Unlike the Gaussian models, the underlying likelihood is computationally challenging. We use a numerical approximation via a Gaussian quadrature to circumvent this issue. A test for checking zero-inflation has also been developed in our setting. Finite sample properties of our estimators and test have been investigated by extensive simulations. Finally, the statistical methodology has been applied to analyze the maize data mentioned before.  相似文献   

7.
The zero-inflated Poisson regression model is commonly used when analyzing economic data that come in the form of non-negative integers since it accounts for excess zeros and overdispersion of the dependent variable. However, a problem often encountered when analyzing economic data that has not been addressed for this model is multicollinearity. This paper proposes ridge regression (RR) estimators and some methods for estimating the ridge parameter k for a non-negative model. A simulation study has been conducted to compare the performance of the estimators. Both mean squared error and mean absolute error are considered as the performance criteria. The simulation study shows that some estimators are better than the commonly used maximum-likelihood estimator and some other RR estimators. Based on the simulation study and an empirical application, some useful estimators are recommended for practitioners.  相似文献   

8.
In recent years, zero-inflated count data models, such as zero-inflated Poisson (ZIP) models, are widely used as the count data with extra zeros are very common in many practical problems. In order to model the correlated count data which are either clustered or repeated and to assess the effects of continuous covariates or of time scales in a flexible way, a class of semiparametric mixed-effects models for zero-inflated count data is considered. In this article, we propose a fully Bayesian inference for such models based on a data augmentation scheme that reflects both random effects of covariates and mixture of zero-inflated distribution. A computational efficient MCMC method which combines the Gibbs sampler and M-H algorithm is implemented to obtain the estimate of the model parameters. Finally, a simulation study and a real example are used to illustrate the proposed methodologies.  相似文献   

9.
Count data with excess zeros are common in many biomedical and public health applications. The zero-inflated Poisson (ZIP) regression model has been widely used in practice to analyze such data. In this paper, we extend the classical ZIP regression framework to model count time series with excess zeros. A Markov regression model is presented and developed, and the partial likelihood is employed for statistical inference. Partial likelihood inference has been successfully applied in modeling time series where the conditional distribution of the response lies within the exponential family. Extending this approach to ZIP time series poses methodological and theoretical challenges, since the ZIP distribution is a mixture and therefore lies outside the exponential family. In the partial likelihood framework, we develop an EM algorithm to compute the maximum partial likelihood estimator (MPLE). We establish the asymptotic theory of the MPLE under mild regularity conditions and investigate its finite sample behavior in a simulation study. The performances of different partial-likelihood based model selection criteria are compared in the presence of model misspecification. Finally, we present an epidemiological application to illustrate the proposed methodology.  相似文献   

10.
While excess zeros are often thought to cause data over-dispersion (i.e. when the variance exceeds the mean), this implication is not absolute. One should instead consider a flexible class of distributions that can address data dispersion along with excess zeros. This work develops a zero-inflated sum-of-Conway-Maxwell-Poissons (ZISCMP) regression as a flexible analysis tool to model count data that express significant data dispersion and contain excess zeros. This class of models contains several special case zero-inflated regressions, including zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated binomial (ZIB), and the zero-inflated Conway-Maxwell-Poisson (ZICMP). Through simulated and real data examples, we demonstrate class flexibility and usefulness. We further utilize it to analyze shark species data from Australia's Great Barrier Reef to assess the environmental impact of human action on the number of various species of sharks.  相似文献   

11.
The negative binomial (NB)-mixed regression in many situations is more appropriate for analysing the correlated and over-dispersed count data. In this paper, a score test for assessing extra zeros against the NB-mixed regression in the correlated count data with excess zeros is developed. The sampling distribution and power of the score test statistic is evaluated using a simulation study. The results show that under a wide range of conditions, the score statistic performs satisfactorily. Finally, the use of the score test is illustrated on DMFT index data of children aged 12 years old.  相似文献   

12.
Abstract

The objective of this paper is to propose an efficient estimation procedure in a marginal mean regression model for longitudinal count data and to develop a hypothesis test for detecting the presence of overdispersion. We extend the matrix expansion idea of quadratic inference functions to the negative binomial regression framework that entails accommodating both the within-subject correlation and overdispersion issue. Theoretical and numerical results show that the proposed procedure yields a more efficient estimator asymptotically than the one ignoring either the within-subject correlation or overdispersion. When the overdispersion is absent in data, the proposed method might hinder the estimation efficiency in practice, yet the Poisson regression based regression model is fitted to the data sufficiently well. Therefore, we construct the hypothesis test that recommends an appropriate model for the analysis of the correlated count data. Extensive simulation studies indicate that the proposed test can identify the effective model consistently. The proposed procedure is also applied to a transportation safety study and recommends the proposed negative binomial regression model.  相似文献   

13.
The zero-inflated negative binomial (ZINB) model is used to account for commonly occurring overdispersion detected in data that are initially analyzed under the zero-inflated Poisson (ZIP) model. Tests for overdispersion (Wald test, likelihood ratio test [LRT], and score test) based on ZINB model for use in ZIP regression models have been developed. Due to similarity to the ZINB model, we consider the zero-inflated generalized Poisson (ZIGP) model as an alternate model for overdispersed zero-inflated count data. The score test has an advantage over the LRT and the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis. This paper proposes score tests for overdispersion based on the ZIGP model and illustrates that the derived score statistics are exactly the same as the score statistics under the ZINB model. A simulation study indicates the proposed score statistics are preferred to other tests for higher empirical power. In practice, based on the approximate mean–variance relationship in the data, the ZINB or ZIGP model can be considered, and a formal score test based on asymptotic standard normal distribution can be employed for assessing overdispersion in the ZIP model. We provide an example to illustrate the procedures for data analysis.  相似文献   

14.
Hall (2000) has described zero‐inflated Poisson and binomial regression models that include random effects to account for excess zeros and additional sources of heterogeneity in the data. The authors of the present paper propose a general score test for the null hypothesis that variance components associated with these random effects are zero. For a zero‐inflated Poisson model with random intercept, the new test reduces to an alternative to the overdispersion test of Ridout, Demério & Hinde (2001). The authors also examine their general test in the special case of the zero‐inflated binomial model with random intercept and propose an overdispersion test in that context which is based on a beta‐binomial alternative.  相似文献   

15.
In count data models, overdispersion of the dependent variable can be incorporated into the model if a heterogeneity term is added into the mean parameter of the Poisson distribution. We use a nonparametric estimation for the heterogeneity density based on a squared Kth-order polynomial expansion, that we generalize for panel data. A numerical illustration using an insurance dataset is discussed. Even if some statistical analyses showed no clear differences between these new models and the standard Poisson with gamma random effects, we show that the choice of the random effects distribution has a significant influence for interpreting our results.  相似文献   

16.
In many applications, the clustered count data often contain excess zeros and the zero-inflated generalized Poisson mixed (ZIGPM) regression model may be suitable. However, dispersion in ZIGPM is often treated as fixed unknown parameter, and this assumption may be not appropriate in some situations. In this article, a score test for homogeneity of dispersion parameter in ZIGPM regression model is developed and corresponding test statistic is obtained. Sampling distribution and power of the score test statistic are investigated through Monte Carlo simulation. Finally, results from a biological example illustrate the usefulness of the diagnostic statistic.  相似文献   

17.
A scan statistic is proposed for the prospective monitoring of spatiotemporal count data with an excess of zeros. The method that is based on an outbreak model for the zero‐inflated Poisson distribution is shown to be superior to traditional scan statistics based on the Poisson distribution in the presence of structural zeros. The spatial accuracy and the detection timeliness of the proposed scan statistic are investigated by means of simulation, and an application on the weekly cases of Campylobacteriosis in Germany illustrates how the scan statistic could be used to detect emerging disease outbreaks. An implementation of the method is provided in the open‐source R package scanstatistics available on the Comprehensive R Archive Network.  相似文献   

18.
Zero-inflated count data are frequently encountered in public health and epidemiology research. Two-parts model is often used to model the excessive zeros, which are a mixture of two components: a point mass at zero and a count distribution, such as a Poisson distribution. When the rate of events per unit exposure is of interest, offset is commonly used to account for the varying extent of exposure, which is essentially a predictor whose regression coefficient is fixed at one. Such an assumption of exposure effect is, however, quite restrictive for many practical problems. Further, for zero-inflated models, offset is often only included in the count component of the model. However, the probability of excessive zero component could also be affected by the amount of ‘exposure’. We, therefore, proposed incorporating the varying exposure as a covariate rather than an offset term in both the probability of excessive zeros and conditional counts components of the zero-inflated model. A real example is used to illustrate the usage of the proposed methods, and simulation studies are conducted to assess the performance of the proposed methods for a broad variety of situations.  相似文献   

19.
We present a novel model, which is a two-parameter extension of the Poisson distribution. Its normalizing constant is related to the Touchard polynomials, hence the name of this model. It is a flexible distribution that can account for both under- or overdispersion and concentration of zeros that are frequently found in non-Poisson count data. In contrast to some other generalizations, the Hessian matrix for maximum likelihood estimation of the Touchard parameters has a simple form. We exemplify with three data sets, showing that our suggested model is a competitive candidate for fitting non-Poisson counts.  相似文献   

20.
The analysis of traffic accident data is crucial to address numerous concerns, such as understanding contributing factors in an accident''s chain-of-events, identifying hotspots, and informing policy decisions about road safety management. The majority of statistical models employed for analyzing traffic accident data are logically count regression models (commonly Poisson regression) since a count – like the number of accidents – is used as the response. However, features of the observed data frequently do not make the Poisson distribution a tenable assumption. For example, observed data rarely demonstrate an equal mean and variance and often times possess excess zeros. Sometimes, data may have heterogeneous structure consisting of a mixture of populations, rather than a single population. In such data analyses, mixtures-of-Poisson-regression models can be used. In this study, the number of injuries resulting from casualties of traffic accidents registered by the General Directorate of Security (Turkey, 2005–2014) are modeled using a novel mixture distribution with two components: a Poisson and zero-truncated-Poisson distribution. Such a model differs from existing mixture models in literature where the components are either all Poisson distributions or all zero-truncated Poisson distributions. The proposed model is compared with the Poisson regression model via simulation and in the analysis of the traffic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号