首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most materials and components degrade physically before they fail. Engineering degradation tests are designed to measure these degradation processes. Measurements in the tests reflect the inherent randomness of degradation itself as well as measurement errors created by imperfect instruments, procedures and environments. This paper describes a statistical model for measured degradation data that takes both sources of variation into account. The degradation process in the model is taken to be a Wiener diffusion process. The measurement errors are assumed to be independent normal random outcomes that are independent of the degradation process. The paper describes inference procedures for the model and discusses some practical issues that must be considered in dealing with the statistical problem. A case study is presented.  相似文献   

2.
Step-stress accelerated degradation test (SSADT) plays an important role in assessing the lifetime distribution of highly reliable products under normal operating conditions when there are not enough test units available for testing purposes. Recently, the optimal SSADT plans are presented based on an underlying assumption that there is only one performance characteristic. However, many highly reliable products usually have complex structure, with their reliability being evaluated by two or more performance characteristics. At the same time, the degradation of these performance characteristics would be always positive and strictly increasing. In such a case, the gamma process is usually considered as a degradation process due to its independent and nonnegative increments properties. Therefore, it is of great interest to design an efficient SSADT plan for the products with multiple performance characteristics based on gamma processes. In this work, we first introduce reliability model of the degradation products with two performance characteristics based on gamma processes, and then present the corresponding SSADT model. Next, under the constraint of total experimental cost, the optimal settings such as sample size, measurement times, and measurement frequency are obtained by minimizing the asymptotic variance of the estimated 100 qth percentile of the product’s lifetime distribution. Finally, a numerical example is given to illustrate the proposed procedure.  相似文献   

3.
Mis-specification analyses of gamma and Wiener degradation processes   总被引:2,自引:0,他引:2  
Degradation models are widely used these days to assess the lifetime information of highly reliable products if there exist some quality characteristics (QC) whose degradation over time can be related to the reliability of the product. In this study, motivated by a laser data, we investigate the mis-specification effect on the prediction of product's MTTF (mean-time-to-failure) when the degradation model is wrongly fitted. More specifically, we derive an expression for the asymptotic distribution of quasi-MLE (QMLE) of the product's MTTF when the true model comes from gamma degradation process, but is wrongly assumed to be Wiener degradation process. The penalty for the model mis-specification can then be addressed sequentially. The result demonstrates that the effect on the accuracy of the product's MTTF prediction strongly depends on the ratio of critical value to the scale parameter of the gamma degradation process. The effects on the precision of the product's MTTF prediction are observed to be serious when the shape and scale parameters of the gamma degradation process are large. We then carry out a simulation study to evaluate the penalty of the model mis-specification, using which we show that the simulation results are quite close to the theoretical ones even when the sample size and termination time are not large. For the reverse mis-specification problem, i.e., when the true degradation is a Wiener process, but is wrongly assumed to be a gamma degradation process, we carry out a Monte Carlo simulation study to examine the effect of the corresponding model mis-specification. The obtained results reveal that the effect of this model mis-specification is negligible.  相似文献   

4.
The use of Bayesian models for the reconstruction of images degraded by both some blurring function H and the presence of noise has become popular in recent years. Making an analogy between classical degradation processes and resampling, we propose a Bayesian model for generating finer resolution images. The approach involves defining resampling, or aggregation, as a linear operator applied to an original picture to produce derived lower resolution data which represent our available experimental infor-mation. Within this framework, the operation of making inference on the orginal data can be viewed as an inverse linear transformation problem. This problem, formalized through Bayes' theorem, can be solved by the classical maximum a posteriori estimation procedure. Image local characteristics are assumed to follow a Gaussian Markov random field. Under some mild assumptions, simple, iterative and local operations are involved, making parallel 'relaxation' processing feasible. experimental results are shown on some images, for which good subsampling estimates are obtained.  相似文献   

5.
In this paper, we consider that the degradation of two performance characteristics of a product can be modelled by stochastic processes and jointly by copula functions, but different stochastic processes govern the behaviour of each performance characteristic (PC) degradation. Different heterogeneous and homogeneous models are presented considering copula functions and different combinations of the most used stochastic processes in degradation analysis as marginal distributions. This is an important aspect to consider because the behaviour of the degradation of each PC may be different in its nature. As the joint distributions of the proposed models result in complex distributions, the estimation of the parameters of interest is performed via MCMC. A simulation study is performed to compare heterogeneous and homogeneous models. In addition, the proposed models are implemented to crack propagation data of two terminals of an electronic device, and some insights are provided about the product reliability under heterogeneous models.  相似文献   

6.
Due to the growing importance in maintenance scheduling, the issue of residual life (RL) estimation for some high reliable products based on degradation data has been studied quite extensively. However, most of the existing work only deals with one-dimensional degradation data, which may not be realistic in some cases. Here, an adaptive method of RL estimation is developed based on two-dimensional degradation data. It is assumed that a product has two performance characteristics (PCs) and that the degradation of each PC over time is governed by a non-stationary gamma degradation process. From a practical consideration, it is further assumed that these two PCs are dependent and that their dependency can be characterized by a copula function. As the likelihood function in such a situation is complicated and computationally quite intensive, a two-stage method is used to estimate the unknown parameters of the model. Once new degradation information of the product being monitored becomes available, random effects are first updated by using the Bayesian method. Following that, the RL at current time is estimated accordingly. As the degradation data information accumulates, the RL can be re-estimated in an adaptive manner. Finally, a numerical example about fatigue cracks is presented in order to illustrate the proposed model and the developed inferential method.  相似文献   

7.
An important problem in reliability and survival analysis is that of modeling degradation together with any observed failures in a life test. Here, based on a continuous cumulative damage approach with a Gaussian process describing degradation, a general accelerated test model is presented in which failure times and degradation measures can be combined for inference about system lifetime. Some specific models when the drift of the Gaussian process depends on the acceleration variable are discussed in detail. Illustrative examples using simulated data as well as degradation data observed in carbon-film resistors are presented.  相似文献   

8.
For some highly reliable products, degradation data have been studied quite extensively to evaluate their reliability characteristics. However, the accuracy of evaluation results depends strongly on the suitability of the proposed degradation model for capturing the degradation over time. If the degradation model is mis-specified, it may result in inaccurate results. In this work, we focus on the issue of model mis-specification between nonlinear Wiener process-based degradation models in which both the product-to-product variability and the temporal uncertainty of the degradation can be considered simultaneously with the nonlinearity in degradation paths. Specifically, a generalized Wiener process-based degradation model is wrongly fitted by its two limiting cases. The effects of model mis-specification in such situations on the MTTF (mean-time-to-failure) of the product are measured with the relative bias and the relative variability. Results from a numerical example concerning fatigue cracks show that the effect of mis-specification is serious under some parameter settings, i.e., the relative bias departs from 0, and the relative variability significantly departs from 1, if the generalized Wiener degradation process is wrongly assumed to be its limiting cases.  相似文献   

9.
The purpose of this paper is to address the optimal design of the step-stress accelerated degradation test (SSADT) issue when the degradation process of a product follows the inverse Gaussian (IG) process. For this design problem, an important task is to construct a link model to connect the degradation magnitudes at different stress levels. In this paper, a proportional degradation rate model is proposed to link the degradation paths of the SSADT with stress levels, in which the average degradation rate is proportional to an exponential function of the stress level. Two optimization problems about the asymptotic variances of the lifetime characteristics' estimators are investigated. The optimal settings including sample size, measurement frequency and the number of measurements for each stress level are determined by minimizing the two objective functions within a given budget constraint. As an example, the sliding metal wear data are used to illustrate the proposed model.  相似文献   

10.
In this paper we investigate several tests for the hypothesis of a parametric form of the error distribution in the common linear and non‐parametric regression model, which are based on empirical processes of residuals. It is well known that tests in this context are not asymptotically distribution‐free and the parametric bootstrap is applied to deal with this problem. The performance of the resulting bootstrap test is investigated from an asymptotic point of view and by means of a simulation study. The results demonstrate that even for moderate sample sizes the parametric bootstrap provides a reliable and easy accessible solution to the problem of goodness‐of‐fit testing of assumptions regarding the error distribution in linear and non‐parametric regression models.  相似文献   

11.
The gamma process is a natural model for degradation processes in which deterioration is supposed to take place gradually over time in a sequence of tiny increments. When units or individuals are observed over time it is often apparent that they degrade at different rates, even though no differences in treatment or environment are present. Thus, in applying gamma-process models to such data, it is necessary to allow for such unexplained differences. In the present paper this is accomplished by constructing a tractable gamma-process model incorporating a random effect. The model is fitted to some data on crack growth and corresponding goodness-of-fit tests are carried out. Prediction calculations for failure times defined in terms of degradation level passages are developed and illustrated.  相似文献   

12.
Joint modeling of degradation and failure time data   总被引:1,自引:0,他引:1  
This paper surveys some approaches to model the relationship between failure time data and covariate data like internal degradation and external environmental processes. These models which reflect the dependency between system state and system reliability include threshold models and hazard-based models. In particular, we consider the class of degradation–threshold–shock models (DTS models) in which failure is due to the competing causes of degradation and trauma. For this class of reliability models we express the failure time in terms of degradation and covariates. We compute the survival function of the resulting failure time and derive the likelihood function for the joint observation of failure times and degradation data at discrete times. We consider a special class of DTS models where degradation is modeled by a process with stationary independent increments and related to external covariates through a random time scale and extend this model class to repairable items by a marked point process approach. The proposed model class provides a rich conceptual framework for the study of degradation–failure issues.  相似文献   

13.
ABSTRACT

This article considers degradation and failure time models with multiple failure modes which used to study the problem of longevity and aging in survival analysis and reliability. Degradation process is modeled using general nonparametric, nonlinear path models. Semi-parametric models for the intensities of the traumatic failures are used supposing that these intensities depend on degradation level. Semi-parametric estimators of various reliability characteristics are proposed and asymptotic properties of the estimators are obtained. The theoretical results are illustrated using simulated data.  相似文献   

14.
To assess the reliability of highly reliable products that have two or more performance characteristics (PCs) in an accurate manner, relations between the PCs should be taken duly into account. If they are not independent, it would then become important to describe the dependence of the PCs. For many products, the constant-stress degradation test cannot provide sufficient data for reliability evaluation and for this reason, accelerated degradation test is usually performed. In this article, we assume that a product has two PCs and that the PCs are governed by a Wiener process with a time scale transformation, and the relationship between the PCs is described by the Frank copula function. The copula parameter is dependent on stress and assumed to be a function of stress level that can be described by a logistic function. Based on these assumptions, a bivariate constant-stress accelerated degradation model is proposed here. The direct likelihood estimation of parameters of such a model becomes analytically intractable, and so the Bayesian Markov chain Monte Carlo (MCMC) method is developed here for this model for obtaining the maximum likelihood estimates (MLEs) efficiently. For an illustration of the proposed model and the method of inference, a simulated example is presented along with the associated computational results.  相似文献   

15.
Modern highly reliable products usually have complex structure and many functions. This means that they may have two or more performance characteristics. All the performance characteristics can reflect the product's performance degradation over time, and they may be independent or dependent. If the performance characteristics are independent, they can be modelled separately. But if they are not independent, it is very important to find the joint distribution function of the performance characteristics for estimating the reliability of the product as accurately as possible. Here, we suppose that a product has two performance characteristics and the degradation paths of these two performance characteristics can be governed by a Wiener process with a time-scale transformation, and that the dependency of the performance characteristics can be described by a copula function. The parameters of the two performance characteristics and the copula function can be estimated jointly. The model in such a situation is very complicated and analytically intractable and becomes cumbersome from a computational viewpoint. For this reason, the Bayesian Markov chain Monte Carlo method is developed for this problem that allows the maximum-likelihood estimates of the parameters to be determined in an efficient manner. For an illustration of the proposed model, a numerical example about fatigue cracks is presented.  相似文献   

16.
For reliability-critical and expensive products, it is necessary to estimate their residual lives based on available information, such as the degradation data, so that proper maintenance actions can be arranged to reduce or even avoid the occurrence of failures. In this work, by assuming that the product-to-product variability of the degradation is characterized by a skew-normal distribution, a generalized Wiener process-based degradation model is developed. Following that, the issue of residual life (RL) estimation of the target product is addressed in detail. The proposed degradation model provides greater flexibility to capture a variety of degradation processes, since several commonly used Wiener process-based degradation models can be seen as special cases. Through the EM algorism, the population-based degradation information is used to estimate the parameters of the model. Whenever new degradation measurement information of the target product becomes available, the degradation model is first updated based on the Bayesian method. In this way, the RL of the target product can be estimated in an adaptive manner. Finally, the developed methodology is demonstrated by a simulation study.  相似文献   

17.
Abstract

Many engineering systems have multiple components with more than one degradation measure which is dependent on each other due to their complex failure mechanisms, which results in some insurmountable difficulties for reliability work in engineering. To overcome these difficulties, the system reliability prediction approaches based on performance degradation theory develop rapidly in recent years, and show their superiority over the traditional approaches in many applications. This paper proposes reliability models of systems with two dependent degrading components. It is assumed that the degradation paths of the components are governed by gamma processes. For a parallel system, its failure probability function can be approximated by the bivariate Birnbaum–Saunders distribution. According to the relationship of parallel and series systems, it is easy to find that the failure probability function of a series system can be expressed by the bivariate Birnbaum–Saunders distribution and its marginal distributions. The model in such a situation is very complicated and analytically intractable, and becomes cumbersome from a computational viewpoint. For this reason, the Bayesian Markov chain Monte Carlo method is developed for this problem that allows the maximum likelihood estimates of the parameters to be determined in an efficient manner. After that, the confidence intervals of the failure probability of systems are given. For an illustration of the proposed model, a numerical example about railway track is presented.  相似文献   

18.
The problem of selecting the best of k populations is studied for data which are incomplete as some of the values have been deleted randomly. This situation is met in extreme value analysis where only data exceeding a threshold are observable. For increasing sample size we study the case where the probability that a value is observed tends to zero, but the sparse condition is satisfied, so that the mean number of observable values in each population is bounded away from zero and infinity as the sample size tends to infinity. The incomplete data are described by thinned point processes which are approximated by Poisson point processes. Under weak assumptions and after suitable transformations these processes converge to a Poisson point process. Optimal selection rules for the limit model are used to construct asymptotically optimal selection rules for the original sequence of models. The results are applied to extreme value data for high thresholds data.  相似文献   

19.
Stationary renewal point processes are defined by the probability distribution of the distances between successive points (lifetimes) that are independent and identically distributed random variables. For some applications it is also interesting to define the properties of a renewal process by using the renewal density. There are well-known expressions of this density in terms of the probability density of the lifetimes. It is more difficult to solve the inverse problem consisting in the determination of the density of the lifetimes in terms of the renewal density. Theoretical expressions between their Laplace transforms are available but the inversion of these transforms is often very difficult to obtain in closed form. We show that this is possible for renewal processes presenting a dead-time property characterized by the fact that the renewal density is zero in an interval including the origin. We present the principle of a recursive method allowing the solution of this problem and we apply this method to the case of some processes with input dead-time. Computer simulations on Poisson and Erlang (2) processes show quite good agreement between theoretical calculations and experimental measurements on simulated data.  相似文献   

20.
Sparsely sampled diffusion processes, in this paper interpreted as data sampled sparsely in time relative to the time constant, is a challenging statistical problem. Most approximations of the transition kernel are derived under the assumption that data is frequently sampled and these approximations are often severely biased for sparsely sampled data. Monte Carlo methods can be used for this problem as the transition density can be estimated with arbitrary accuracy regardless of the sampling frequency, but this is computationally expensive or even prohibited unless effective variance reduction is applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号