首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We develop a Markov chain Monte Carlo algorithm, based on ‘stochastic search variable selection’ (George and McCuUoch, 1993), for identifying promising log-linear models. The method may be used in the analysis of multi-way contingency tables where the set of plausible models is very large.  相似文献   

2.
This paper is based on the application of a Bayesian model to a clinical trial study to determine a more effective treatment to lower mortality rates and consequently to increase survival times among patients with lung cancer. In this study, Qian et al. [13 J. Qian, D.K. Stangl, and S. George, A Weibull model for survival data: Using prediction to decide when to stop a clinical trial, in Bayesian Biostatistics, D. Berry and D. Stangl, eds., Marcel Dekker, New York, 1996, pp. 187205. [Google Scholar]] strived to determine if a Weibull survival model can be used to decide whether to stop a clinical trial. The traditional Gibbs sampler was used to estimate the model parameters. This paper proposes to use the independent steady-state Gibbs sampling (ISSGS) approach, introduced by Dunbar et al. [3 M. Dunbar, H.M. Samawi, R. Vogel, and L. Yu, A more efficient Gibbs sampler estimation using steady state simulation: Application to public health studies, J. Stat. Simul. Comput. 10.1080/00949655.2013.770857.[Taylor &; Francis Online] [Google Scholar]], to improve the original Gibbs sampler in multidimensional problems. It is demonstrated that ISSGS provides accuracy with unbiased estimation and improves the performance and convergence of the Gibbs sampler in this application.  相似文献   

3.
This paper deals with an important problem with large and complex Bayesian networks. Exact inference in these networks is simply not feasible owing to the huge storage requirements of exact methods. Markov chain Monte Carlo methods, however, are able to deal with these large networks but to do this they require an initial legal configuration to set off the sampler. So far nondeterministic methods such as forward sampling have often been used for this, even though the forward sampler may take an eternity to come up with a legal configuration. In this paper a novel algorithm will be presented that allows a legal configuration in a general Bayesian network to be found in polynomial time in almost all cases. The algorithm will not be proved deterministic but empirical results will demonstrate that this holds in most cases. Also, the algorithm will be justified by its simplicity and ease of implementation.  相似文献   

4.
In Markov chain Monte Carlo analysis, rapid convergence of the chain to its target distribution is crucial. A chain that converges geometrically quickly is geometrically ergodic. We explore geometric ergodicity for two-component Gibbs samplers (GS) that, under a chosen scanning strategy, evolve through one-at-a-time component-wise updates. We consider three such strategies: composition, random sequence, and random scans. We show that if any one of these scans produces a geometrically ergodic GS, so too do the others. Further, we provide a simple set of sufficient conditions for the geometric ergodicity of the GS. We illustrate our results using two examples.  相似文献   

5.
A key difficulty in the use of Gibbs prior distributions in Bayesian image analysis is the intractability of the normalisation constant. One approach is to perform off-line simulations which allow a calibration of normalisation constant against prior parameter. In this paper the reverse-logistic regression approach to calibration will be examined for various Gibbs distributions and explicit parametric equations will be proposed. A simple method for combining separate calibrations will be illustrated and the relationship between normalisation constant and image size will be explored with an empirical approximation proposed.  相似文献   

6.
We analyse a hierarchical Bayes model which is related to the usual empirical Bayes formulation of James-Stein estimators. We consider running a Gibbs sampler on this model. Using previous results about convergence rates of Markov chains, we provide rigorous, numerical, reasonable bounds on the running time of the Gibbs sampler, for a suitable range of prior distributions. We apply these results to baseball data from Efron and Morris (1975). For a different range of prior distributions, we prove that the Gibbs sampler will fail to converge, and use this information to prove that in this case the associated posterior distribution is non-normalizable.  相似文献   

7.
针对传统协整检验不能适用于具有随机性特征的超高频金融数据的问题,构建贝叶斯超高频金融数据协整模型,结合参数的后验条件分布设计Gibbs抽样方案,提出基于超高频金融数据的贝叶斯协整检验方法,并利用中国股市超高频金融数据进行实证分析。研究结果表明:贝叶斯方法把参数看作随机变量的思想适合超高频数据随机性的特点,贝叶斯超高频数据协整方法能够不断更新参数信息,避免了OLS估计的有偏性问题,可以得到更符合实际的结论。  相似文献   

8.
The particle Gibbs sampler is a systematic way of using a particle filter within Markov chain Monte Carlo. This results in an off‐the‐shelf Markov kernel on the space of state trajectories, which can be used to simulate from the full joint smoothing distribution for a state space model in a Markov chain Monte Carlo scheme. We show that the particle Gibbs Markov kernel is uniformly ergodic under rather general assumptions, which we will carefully review and discuss. In particular, we provide an explicit rate of convergence, which reveals that (i) for fixed number of data points, the convergence rate can be made arbitrarily good by increasing the number of particles and (ii) under general mixing assumptions, the convergence rate can be kept constant by increasing the number of particles superlinearly with the number of observations. We illustrate the applicability of our result by studying in detail a common stochastic volatility model with a non‐compact state space.  相似文献   

9.
Studies of the behaviors of glaciers, ice sheets, and ice streams rely heavily on both observations and physical models. Data acquired via remote sensing provide critical information on geometry and movement of ice over large sections of Antarctica and Greenland. However, uncertainties are present in both the observations and the models. Hence, there is a need for combining these information sources in a fashion that incorporates uncertainty and quantifies its impact on conclusions. We present a hierarchical Bayesian approach to modeling ice-stream velocities incorporating physical models and observations regarding velocity, ice thickness, and surface elevation from the North East Ice Stream in Greenland. The Bayesian model leads to interesting issues in model assessment and computation.  相似文献   

10.
This article provides a justification of the ban against sub-sampling the output of a stationary Markov chain that is suitable for presentation in undergraduate and beginning graduate-level courses. The justification does not rely on reversibility of the chain as does Geyer's (1992) argument and so applies to the usual implementation of the Gibbs sampler.  相似文献   

11.
内容提要:向量自回归模型是多元时间序列分析中最常用的方法之一。在建立模型的过程中模型选择是非常重要的一个环节,如果候选模型不是很多时,可以通过比较每个模型的准则值如AIC、AICc、BIC或HQ进行模型选择。可是,当存在大量候选模型时,我们无法一一比较每个模型的准则值。为了解决这个问题,本文提出一个基于吉伯斯样本生成器的向量自回归模型选择方法,结果表明应用该方法能够从大量候选模型中准确、高效地确认准则值最小的模型。  相似文献   

12.
In this article, we develop rejection sampling algorithms to sample from some truncated and tail distributions. Such samplers are needed in many Markov chain Monte Carlo methods, often in connection with Bayesian inference. In addition to univariate normal, gamma, and beta distributions, we consider multivariate normal distributions truncated to certain sets.  相似文献   

13.
This article presents a new way of modeling time-varying volatility. We generalize the usual stochastic volatility models to encompass regime-switching properties. The unobserved state variables are governed by a first-order Markov process. Bayesian estimators are constructed by Gibbs sampling. High-, medium- and low-volatility states are identified for the Standard and Poor's 500 weekly return data. Persistence in volatility is explained by the persistence in the low- and the medium-volatility states. The high-volatility regime is able to capture the 1987 crash and overlap considerably with four U.S. economic recession periods.  相似文献   

14.
We consider Particle Gibbs (PG) for Bayesian analysis of non-linear non-Gaussian state-space models. As a Monte Carlo (MC) approximation of the Gibbs procedure, PG uses sequential MC (SMC) importance sampling inside the Gibbs to update the latent states. We propose to combine PG with the Particle Efficient Importance Sampling (PEIS). By using SMC sampling densities which are approximately globally fully adapted to the targeted density of the states, PEIS can substantially improve the simulation efficiency of the PG relative to existing PG implementations. The efficiency gains are illustrated in PG applications to a non-linear local-level model and stochastic volatility models.  相似文献   

15.
The study of proportions is a common topic in many fields of study. The standard beta distribution or the inflated beta distribution may be a reasonable choice to fit a proportion in most situations. However, they do not fit well variables that do not assume values in the open interval (0, c), 0 < c < 1. For these variables, the authors introduce the truncated inflated beta distribution (TBEINF). This proposed distribution is a mixture of the beta distribution bounded in the open interval (c, 1) and the trinomial distribution. The authors present the moments of the distribution, its scoring vector, and Fisher information matrix, and discuss estimation of its parameters. The properties of the suggested estimators are studied using Monte Carlo simulation. In addition, the authors present an application of the TBEINF distribution for unemployment insurance data.  相似文献   

16.
Layer Sampling     
Layer sampling is an algorithm for generating variates from a non-normalized multidimensional distribution p( · ). It empirically constructs a majorizing function for p( · ) from a sequence of layers. The method first selects a layer based on the previous variate. Next, a sample is drawn from the selected layer, using a method such as Rejection Sampling. Layer sampling is regenerative. At regeneration times, the layers may be adapted to increase mixing of the Markov chain. Layer sampling may also be used to estimate arbitrary integrals, including normalizing constants.  相似文献   

17.
Exact Sampling from a Continuous State Space   总被引:3,自引:0,他引:3  
Propp & Wilson (1996) described a protocol, called coupling from the past, for exact sampling from a target distribution using a coupled Markov chain Monte Carlo algorithm. In this paper we extend coupling from the past to various MCMC samplers on a continuous state space; rather than following the monotone sampling device of Propp & Wilson, our approach uses methods related to gamma-coupling and rejection sampling to simulate the chain, and direct accounting of sample paths.  相似文献   

18.
In applications of Gaussian processes (GPs) where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. This is normally done by means of standard Markov chain Monte Carlo (MCMC) algorithms, which require repeated expensive calculations involving the marginal likelihood. Motivated by the desire to avoid the inefficiencies of MCMC algorithms rejecting a considerable amount of expensive proposals, this paper develops an alternative inference framework based on adaptive multiple importance sampling (AMIS). In particular, this paper studies the application of AMIS for GPs in the case of a Gaussian likelihood, and proposes a novel pseudo-marginal-based AMIS algorithm for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios.  相似文献   

19.
Often the dependence in multivariate survival data is modeled through an individual level effect called the frailty. Due to its mathematical simplicity, the gamma distribution is often used as the frailty distribution for hazard modeling. However, it is well known that the gamma frailty distribution has many drawbacks. For example, it weakens the effect of covariates. In addition, in the presence of a multilevel model, overall frailty comes from several levels. To overcome such drawbacks, more heavy-tailed distributions are needed to model the frailty distribution in order to incorporate extra variability. In this article, we develop a class of log-skew-t distributions for the frailty. This class includes the log-normal distribution along with many other heavy tailed distributions, e.g., log-Cauchy, log normal, and log-t as special cases.

Conditional on the frailty, the survival times are assumed to be independent with proportional hazard structure. The modeling process is then completed by assuming multilevel frailty-effects. Instead of tuning a strict parameterization of the baseline hazard function, we consider the partial likelihood approach and thus leave the baseline function unspecified. By eliminating the hazard, the pre-specification and computation are simplified considerably.  相似文献   

20.
Markov chain Monte Carlo methods, in particular, the Gibbs sampler, are widely used algorithms both in application and theoretical works in the classical and Bayesian paradigms. However, these algorithms are often computer intensive. Samawi et al. [Steady-state ranked Gibbs sampler. J. Stat. Comput. Simul. 2012;82(8), 1223–1238. doi:10.1080/00949655.2011.575378] demonstrate through theory and simulation that the dependent steady-state Gibbs sampler is more efficient and accurate in model parameter estimation than the original Gibbs sampler. This paper proposes the independent steady-state Gibbs sampler (ISSGS) approach to improve the original Gibbs sampler in multidimensional problems. It is demonstrated that ISSGS provides accuracy with unbiased estimation and improves the performance and convergence of the Gibbs sampler in multidimensional problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号