首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is currently much discussion about lasso-type regularized regression which is a useful tool for simultaneous estimation and variable selection. Although the lasso-type regularization has several advantages in regression modelling, owing to its sparsity, it suffers from outliers because of using penalized least-squares methods. To overcome this issue, we propose a robust lasso-type estimation procedure that uses the robust criteria as the loss function, imposing L1-type penalty called the elastic net. We also introduce to use the efficient bootstrap information criteria for choosing optimal regularization parameters and a constant in outlier detection. Simulation studies and real data analysis are given to examine the efficiency of the proposed robust sparse regression modelling. We observe that our modelling strategy performs well in the presence of outliers.  相似文献   

2.
The varying coefficient model (VCM) is an important generalization of the linear regression model and many existing estimation procedures for VCM were built on L 2 loss, which is popular for its mathematical beauty but is not robust to non-normal errors and outliers. In this paper, we address the problem of both robustness and efficiency of estimation and variable selection procedure based on the convex combined loss of L 1 and L 2 instead of only quadratic loss for VCM. By using local linear modeling method, the asymptotic normality of estimation is driven and a useful selection method is proposed for the weight of composite L 1 and L 2. Then the variable selection procedure is given by combining local kernel smoothing with adaptive group LASSO. With appropriate selection of tuning parameters by Bayesian information criterion (BIC) the theoretical properties of the new procedure, including consistency in variable selection and the oracle property in estimation, are established. The finite sample performance of the new method is investigated through simulation studies and the analysis of body fat data. Numerical studies show that the new method is better than or at least as well as the least square-based method in terms of both robustness and efficiency for variable selection.  相似文献   

3.
A fast routine for converting regression algorithms into corresponding orthogonal regression (OR) algorithms was introduced in Ammann and Van Ness (1988). The present paper discusses the properties of various ordinary and robust OR procedures created using this routine. OR minimizes the sum of the orthogonal distances from the regression plane to the data points. OR has three types of applications. First, L 2 OR is the maximum likelihood solution of the Gaussian errors-in-variables (EV) regression problem. This L 2 solution is unstable, thus the robust OR algorithms created from robust regression algorithms should prove very useful. Secondly, OR is intimately related to principal components analysis. Therefore, the routine can also be used to create L 1, robust, etc. principal components algorithms. Thirdly, OR treats the x and y variables symmetrically which is important in many modeling problems. Using Monte Carlo studies this paper compares the performance of standard regression, robust regression, OR, and robust OR on Gaussian EV data, contaminated Gaussian EV data, heavy-tailed EV data, and contaminated heavy-tailed EV data.  相似文献   

4.
This paper proposes robust regression to solve the problem of outliers in seemingly unrelated regression (SUR) models. The authors present an adaptation of S‐estimators to SUR models. S‐estimators are robust, have a high breakdown point and are much more efficient than other robust regression estimators commonly used in practice. Furthermore, modifications to Ruppert's algorithm allow a fast evaluation of them in this context. The classical example of U.S. corporations is revisited, and it appears that the procedure gives an interesting insight into the problem.  相似文献   

5.
In this article, we consider the problem of selecting functional variables using the L1 regularization in a functional linear regression model with a scalar response and functional predictors, in the presence of outliers. Since the LASSO is a special case of the penalized least-square regression with L1 penalty function, it suffers from the heavy-tailed errors and/or outliers in data. Recently, Least Absolute Deviation (LAD) and the LASSO methods have been combined (the LAD-LASSO regression method) to carry out robust parameter estimation and variable selection simultaneously for a multiple linear regression model. However, variable selection of the functional predictors based on LASSO fails since multiple parameters exist for a functional predictor. Therefore, group LASSO is used for selecting functional predictors since group LASSO selects grouped variables rather than individual variables. In this study, we propose a robust functional predictor selection method, the LAD-group LASSO, for a functional linear regression model with a scalar response and functional predictors. We illustrate the performance of the LAD-group LASSO on both simulated and real data.  相似文献   

6.
The glmnet package by Friedman et al. [Regularization paths for generalized linear models via coordinate descent, J. Statist. Softw. 33 (2010), pp. 1–22] is an extremely fast implementation of the standard coordinate descent algorithm for solving ?1 penalized learning problems. In this paper, we consider a family of coordinate majorization descent algorithms for solving the ?1 penalized learning problems by replacing each coordinate descent step with a coordinate-wise majorization descent operation. Numerical experiments show that this simple modification can lead to substantial improvement in speed when the predictors have moderate or high correlations.  相似文献   

7.
ABSTRACT

In this paper, we develop an efficient wavelet-based regularized linear quantile regression framework for coefficient estimations, where the responses are scalars and the predictors include both scalars and function. The framework consists of two important parts: wavelet transformation and regularized linear quantile regression. Wavelet transform can be used to approximate functional data through representing it by finite wavelet coefficients and effectively capturing its local features. Quantile regression is robust for response outliers and heavy-tailed errors. In addition, comparing with other methods it provides a more complete picture of how responses change conditional on covariates. Meanwhile, regularization can remove small wavelet coefficients to achieve sparsity and efficiency. A novel algorithm, Alternating Direction Method of Multipliers (ADMM) is derived to solve the optimization problems. We conduct numerical studies to investigate the finite sample performance of our method and applied it on real data from ADHD studies.  相似文献   

8.
A robust estimator is developed for Poisson mixture models with a known number of components. The proposed estimator minimizes the L2 distance between a sample of data and the model. When the component distributions are completely known, the estimators for the mixing proportions are in closed form. When the parameters for the component Poisson distributions are unknown, numerical methods are needed to calculate the estimators. Compared to the minimum Hellinger distance estimator, the minimum L2 estimator can be less robust to extreme outliers, and often more robust to moderate outliers.  相似文献   

9.
Although the t-type estimator is a kind of M-estimator with scale optimization, it has some advantages over the M-estimator. In this article, we first propose a t-type joint generalized linear model as a robust extension to the classical joint generalized linear models for modeling data containing extreme or outlying observations. Next, we develop a t-type pseudo-likelihood (TPL) approach, which can be viewed as a robust version to the existing pseudo-likelihood (PL) approach. To determine which variables significantly affect the variance of the response variable, we then propose a unified penalized maximum TPL method to simultaneously select significant variables for the mean and dispersion models in t-type joint generalized linear models. Thus, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the mean and dispersion models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. Simulation studies are conducted to illustrate the proposed methods.  相似文献   

10.
Multivariate mixture regression models can be used to investigate the relationships between two or more response variables and a set of predictor variables by taking into consideration unobserved population heterogeneity. It is common to take multivariate normal distributions as mixing components, but this mixing model is sensitive to heavy-tailed errors and outliers. Although normal mixture models can approximate any distribution in principle, the number of components needed to account for heavy-tailed distributions can be very large. Mixture regression models based on the multivariate t distributions can be considered as a robust alternative approach. Missing data are inevitable in many situations and parameter estimates could be biased if the missing values are not handled properly. In this paper, we propose a multivariate t mixture regression model with missing information to model heterogeneity in regression function in the presence of outliers and missing values. Along with the robust parameter estimation, our proposed method can be used for (i) visualization of the partial correlation between response variables across latent classes and heterogeneous regressions, and (ii) outlier detection and robust clustering even under the presence of missing values. We also propose a multivariate t mixture regression model using MM-estimation with missing information that is robust to high-leverage outliers. The proposed methodologies are illustrated through simulation studies and real data analysis.  相似文献   

11.
The fused lasso penalizes a loss function by the L1 norm for both the regression coefficients and their successive differences to encourage sparsity of both. In this paper, we propose a Bayesian generalized fused lasso modeling based on a normal-exponential-gamma (NEG) prior distribution. The NEG prior is assumed into the difference of successive regression coefficients. The proposed method enables us to construct a more versatile sparse model than the ordinary fused lasso using a flexible regularization term. Simulation studies and real data analyses show that the proposed method has superior performance to the ordinary fused lasso.  相似文献   

12.
Because outliers and leverage observations unduly affect the least squares regression, the identification of influential observations is considered an important and integrai part of the analysis. However, very few techniques have been developed for the residual analysis and diagnostics for the minimum sum of absolute errors, L1 regression. Although the L1 regression is more resistant to the outliers than the least squares regression, it appears that outliers (leverage) in the predictor variables may affect it. In this paper, our objective is to develop an influence measure for the L1 regression based on the likelihood displacement function. We illustrate the proposed influence measure with examples.  相似文献   

13.
Bayesian model averaging (BMA) is an effective technique for addressing model uncertainty in variable selection problems. However, current BMA approaches have computational difficulty dealing with data in which there are many more measurements (variables) than samples. This paper presents a method for combining ?1 regularization and Markov chain Monte Carlo model composition techniques for BMA. By treating the ?1 regularization path as a model space, we propose a method to resolve the model uncertainty issues arising in model averaging from solution path point selection. We show that this method is computationally and empirically effective for regression and classification in high-dimensional data sets. We apply our technique in simulations, as well as to some applications that arise in genomics.  相似文献   

14.
In this paper, we discuss a parsimonious approach to estimation of high-dimensional covariance matrices via the modified Cholesky decomposition with lasso. Two different methods are proposed. They are the equi-angular and equi-sparse methods. We use simulation to compare the performance of the proposed methods with others available in the literature, including the sample covariance matrix, the banding method, and the L1-penalized normal loglikelihood method. We then apply the proposed methods to a portfolio selection problem using 80 series of daily stock returns. To facilitate the use of lasso in high-dimensional time series analysis, we develop the dynamic weighted lasso (DWL) algorithm that extends the LARS-lasso algorithm. In particular, the proposed algorithm can efficiently update the lasso solution as new data become available. It can also add or remove explanatory variables. The entire solution path of the L1-penalized normal loglikelihood method is also constructed.  相似文献   

15.
In the multiple linear regression analysis, the ridge regression estimator and the Liu estimator are often used to address multicollinearity. Besides multicollinearity, outliers are also a problem in the multiple linear regression analysis. We propose new biased estimators based on the least trimmed squares (LTS) ridge estimator and the LTS Liu estimator in the case of the presence of both outliers and multicollinearity. For this purpose, a simulation study is conducted in order to see the difference between the robust ridge estimator and the robust Liu estimator in terms of their effectiveness; the mean square error. In our simulations, the behavior of the new biased estimators is examined for types of outliers: X-space outlier, Y-space outlier, and X-and Y-space outlier. The results for a number of different illustrative cases are presented. This paper also provides the results for the robust ridge regression and robust Liu estimators based on a real-life data set combining the problem of multicollinearity and outliers.  相似文献   

16.
We propose the Laplace Error Penalty (LEP) function for variable selection in high‐dimensional regression. Unlike penalty functions using piecewise splines construction, the LEP is constructed as an exponential function with two tuning parameters and is infinitely differentiable everywhere except at the origin. With this construction, the LEP‐based procedure acquires extra flexibility in variable selection, admits a unified derivative formula in optimization and is able to approximate the L0 penalty as close as possible. We show that the LEP procedure can identify relevant predictors in exponentially high‐dimensional regression with normal errors. We also establish the oracle property for the LEP estimator. Although not being convex, the LEP yields a convex penalized least squares function under mild conditions if p is no greater than n. A coordinate descent majorization‐minimization algorithm is introduced to implement the LEP procedure. In simulations and a real data analysis, the LEP methodology performs favorably among competitive procedures.  相似文献   

17.
We developed robust estimators that minimize a weighted L1 norm for the first-order bifurcating autoregressive model. When all of the weights are fixed, our estimate is an L1 estimate that is robust against outlying points in the response space and more efficient than the least squares estimate for heavy-tailed error distributions. When the weights are random and depend on the points in the factor space, the weighted L1 estimate is robust against outlying points in the factor space. Simulated and artificial examples are presented. The behavior of the proposed estimate is modeled through a Monte Carlo study.  相似文献   

18.
史兴杰等 《统计研究》2020,37(9):95-105
对于实证研究中经常遇到变量维数高和存在异常值的二分类问题,探索稳健的高维二分类方法显得尤为重要。本文提出基于Lasso惩罚的光滑0-1损失函数二分类法,并利用Fabs 算法高效地解决了变量选择和参数估计问题。数值模拟的结果表明,在不同异常值比例下该方法均具有良好的稳健性。基于CHIP 2013年度数据,利用该方法对农民工子女高中入学决定的影响因素进行了实证研究。分析发现,农民工父母的教育水平、教育水平与家庭经济状况的交互作用、农民工子女性别、性别与民族的交互作用均对农民工子女的入学决定有重要影响。  相似文献   

19.
When the data contain outliers or come from population with heavy-tailed distributions, which appear very often in spatiotemporal data, the estimation methods based on least-squares (L2) method will not perform well. More robust estimation methods are required. In this article, we propose the local linear estimation for spatiotemporal models based on least absolute deviation (L1) and drive the asymptotic distributions of the L1-estimators under some mild conditions imposed on the spatiotemporal process. The simulation results for two examples, with outliers and heavy-tailed distribution, respectively, show that the L1-estimators perform better than the L2-estimators.  相似文献   

20.
By modifying the direct method to solve the overdetermined linear system we are able to present an algorithm for L1 estimation which appears to be superior computationally to any other known algorithm for the simple linear regression problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号