首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Inverse maximum flow problems under the weighted Hamming distance   总被引:1,自引:0,他引:1  
In this paper, we consider inverse maximum flow problem under the weighted Hamming distance. Four models are studied: the problem under sum-type weighted Hamming distance; the problem under bottleneck-type weighted Hamming distance and two mixed types of problems. We present their respective combinatorial algorithms that all run in strongly polynomial times.Research supported by the National Natural Science Foundation of China (60021201), and the Hong Kong Research Grant Council under CERG CityU 9041091 and CUHK 103105.  相似文献   

2.
Energy efficient multicast problem is one of important issues in ad hoc networks. In this paper, we address the energy efficient multicast problem for discrete power levels in ad hoc wireless networks. The problem of our concern is: given n nodes deployed over 2-D plane and each node v has l(v) transmission power levels and a multicast request (s,D) (clearly, when D is V∖{s}, the multicast request is a broadcast request), how to find a multicast tree rooted at s and spanning all destinations in D such that the total energy cost of the multicast tree is minimized. We first prove that this problem is NP-hard and it is unlikely to have an approximation algorithm with performance ratio ρlnn(ρ<1). Then, we propose a general algorithm for the multicast/broadcast tree problem. And based on the general algorithm, we propose an approximation algorithm and a heuristics for multicast tree problem. Especially, we also propose an efficient heuristic for broadcast tree problem. Simulations ensure our algorithms are efficient.  相似文献   

3.
The complexity of the Bandpass problem is re-investigated. Specifically, we show that the problem with any fixed bandpass number B≥2 is NP-hard. Next, a row stacking algorithm is proposed for the problem with three columns, which produces a solution that is at most 1 less than the optimum. For the special case B=2, the row stacking algorithm guarantees an optimal solution. On approximation, for the general problem, we present an O(B 2)-algorithm, which reduces to a 2-approximation algorithm for the special case B=2.  相似文献   

4.
In this paper we propose two algorithms for solving both unweighted and weighted constrained two-dimensional two-staged cutting stock problems. The problem is called two-staged cutting problem because each produced (sub)optimal cutting pattern is realized by using two cut-phases. In the first cut-phase, the current stock rectangle is slit down its width (resp. length) into a set of vertical (resp. horizontal) strips and, in the second cut-phase, each of these strips is taken individually and chopped across its length (resp. width).First, we develop an approximate algorithm for the problem. The original problem is reduced to a series of single bounded knapsack problems and solved by applying a dynamic programming procedure. Second, we propose an exact algorithm tailored especially for the constrained two-staged cutting problem. The algorithm starts with an initial (feasible) lower bound computed by applying the proposed approximate algorithm. Then, by exploiting dynamic programming properties, we obtain good lower and upper bounds which lead to significant branching cuts. Extensive computational testing on problem instances from the literature shows the effectiveness of the proposed approximate and exact approaches.  相似文献   

5.
The market split problem was proposed by Cornuéjols and Dawande as benchmark problem for algorithms solving linear systems with 0/1 variables. Here, we present an algorithm for the more general problem A · x = b with arbitrary lower and upper bound on the variables. The algorithm consists of exhaustive enumeration of all points of a suitable lattice which are contained in a given polyhedron. We present results for the feasibility version as well as for the integer programming version of the market split problem which indicate that the algorithm outperforms the previously published approaches to this problems considerably.  相似文献   

6.
The Web proxy location problem in general networks is an NP-hard problem. In this paper, we study the problem in networks showing a general tree of rings topology. We improve the results of the tree case in literature and get an exact algorithm with time complexity O(nhk), where n is the number of nodes in the tree, h is the height of the tree (the server is in the root of the tree), and k is the number of web proxies to be placed in the net. For the case of networks with a general tree of rings topology we present an exact algorithm with O(kn 2) time complexity.This research has been supported by NSF of China (No. 10371028) and the Educational Department grant of Zhejiang Province (No. 20030622).  相似文献   

7.
The problem of optimal surface flattening in 3-D finds many applications in engineering and manufacturing. However, previous algorithms for this problem are all heuristics without any quality guarantee and the computational complexity of the problem was not well understood. In this paper, we prove that the optimal surface flattening problem is NP-hard. Further, we show that the problem of flattening a topologically spherical surface admits a PTAS and can be solved by a (1+ε)-approximation algorithm in O(nlog n) time for any constant ε>0, where n is the input size of the problem.  相似文献   

8.
Since the seminal work of Ford and Fulkerson in the 1950s, network flow theory is one of the most important and most active areas of research in combinatorial optimization. Coming from the classical maximum flow problem, we introduce and study an apparently basic but new flow problem that features a couple of interesting peculiarities. We derive several results on the complexity and approximability of the new problem. On the way we also discover two closely related basic covering and packing problems that are of independent interest. Starting from an LP formulation of the maximum s-t-flow problem in path variables, we introduce unit upper bounds on the amount of flow being sent along each path. The resulting (fractional) flow problem is NP-hard; its integral version is strongly NP-hard already on very simple classes of graphs. For the fractional problem we present an FPTAS that is based on solving the k shortest paths problem iteratively. We show that the integral problem is hard to approximate and give an interesting O(log?m)-approximation algorithm, where m is the number of arcs in the considered graph. For the multicommodity version of the problem there is an $O(\sqrt{m})Since the seminal work of Ford and Fulkerson in the 1950s, network flow theory is one of the most important and most active areas of research in combinatorial optimization. Coming from the classical maximum flow problem, we introduce and study an apparently basic but new flow problem that features a couple of interesting peculiarities. We derive several results on the complexity and approximability of the new problem. On the way we also discover two closely related basic covering and packing problems that are of independent interest. Starting from an LP formulation of the maximum s-t-flow problem in path variables, we introduce unit upper bounds on the amount of flow being sent along each path. The resulting (fractional) flow problem is NP-hard; its integral version is strongly NP-hard already on very simple classes of graphs. For the fractional problem we present an FPTAS that is based on solving the k shortest paths problem iteratively. We show that the integral problem is hard to approximate and give an interesting O(log m)-approximation algorithm, where m is the number of arcs in the considered graph. For the multicommodity version of the problem there is an O(?m)O(\sqrt{m}) -approximation algorithm. We argue that this performance guarantee is best possible, unless P=NP.  相似文献   

9.
In this paper we consider the constant rank unconstrained quadratic 0-1 optimization problem, CR-QP01 for short. This problem consists in minimizing the quadratic function 〈x, Ax〉 + 〈c, x〉 over the set {0,1} n where c is a vector in ℝ n and A is a symmetric real n × n matrix of constant rank r. We first present a pseudo-polynomial algorithm for solving the problem CR-QP01, which is known to be NP-hard already for r = 1. We then derive two new classes of special cases of the CR-QP01 which can be solved in polynomial time. These classes result from further restrictions on the matrix A. Finally we compare our algorithm with the algorithm of Allemand et al. (2001) for the CR-QP01 with negative semidefinite A and extend the range of applicability of the latter algorithm. It turns out that neither of the two algorithms dominates the other with respect to the class of instances which can be solved in polynomial time.  相似文献   

10.
The problem of partitioning a partially ordered set into a minimum number of chains is a well-known problem. In this paper we study a generalization of this problem, where we not only assume that the chains have bounded size, but also that a weight w i is given for each element i in the partial order such that w i w j if i j. The problem is then to partition the partial order into a minimum-weight set of chains of bounded size, where the weight of a chain equals the weight of the heaviest element in the chain. We prove that this problem is -hard, and we propose and analyze lower bounds for this problem. Based on these lower bounds, we exhibit a 2-approximation algorithm, and show that it is tight. We report computational results for a number of real-world and randomly generated problem instances.  相似文献   

11.
This paper presents an improved algorithm for solving the sum of linear fractional functions (SOLF) problem in 1-D and 2-D. A key subproblem to our solution is the off-line ratio query (OLRQ) problem, which asks to find the optimal values of a sequence of m linear fractional functions (called ratios), each ratio subject to a feasible domain defined by O(n) linear constraints. Based on some geometric properties and the parametric linear programming technique, we develop an algorithm that solves the OLRQ problem in O((m+n)log (m+n)) time. The OLRQ algorithm can be used to speed up every iteration of a known iterative SOLF algorithm, from O(m(m+n)) time to O((m+n)log (m+n)), in 1-D and 2-D. Implementation results of our improved 1-D and 2-D SOLF algorithm have shown that in most cases it outperforms the commonly-used approaches for the SOLF problem. We also apply our techniques to some problems in computational geometry and other areas, improving the previous results.This research was supported in part by the National Science Foundation under Grant CCR-9623585.The research of this author was supported in part by National Science Foundation under grant CCF-0430366.Grant-in-Aid of Ministry of Science, Culture and Education of Japan, No. 10780274.The research of this author was supported in part by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Researchon Priority Areas  相似文献   

12.
Given a set S of starting vertices and a set T of terminating vertices in a graph G = (V,E) with non-negative weights on edges, the minimum Steiner network problem is to find a subgraph of G with the minimum total edge weight. In such a subgraph, we require that for each vertex s S and t T, there is a path from s to a terminating vertex as well as a path from a starting vertex to t. This problem can easily be proven NP-hard. For solving the minimum Steiner network problem, we first present an algorithm that runs in time and space that both are polynomial in n with constant degrees, but exponential in |S|+|T|, where n is the number of vertices in G. Then we present an algorithm that uses space that is quadratic in n and runs in time that is polynomial in n with a degree O(max {max {|S|,|T|}–2,min {|S|,|T|}–1}). In spite of this degree, we prove that the number of Steiner vertices in our solution can be as large as |S|+|T|–2. Our algorithm can enumerate all possible optimal solutions. The input graph G can either be undirected or directed acyclic. We also give a linear time algorithm for the special case when min {|S|,|T|} = 1 and max {|S|,|T|} = 2.The minimum union paths problem is similar to the minimum Steiner network problem except that we are given a set H of hitting vertices in G in addition to the sets of starting and terminating vertices. We want to find a subgraph of G with the minimum total edge weight such that the conditions required by the minimum Steiner network problem are satisfied as well as the condition that every hitting vertex is on a path from a starting vertex to a terminating vertex. Furthermore, G must be directed acyclic. For solving the minimum union paths problem, we also present algorithms that have a time and space tradeoff similar to algorithms for the minimum Steiner network problem. We also give a linear time algorithm for the special case when |S| = 1, |T| = 1 and |H| = 2.An extended abstract of part of this paper appears in Hsu et al. (1996).Supported in part by the National Science Foundation under Grants CCR-9309743 and INT-9207212, and by the Office of Naval Research under Grant No. N00014-93-1-0272.Supported in part by the National Science Council, Taiwan, ROC, under Grant No. NSC-83-0408-E-001-021.  相似文献   

13.
Lee et al. (Lee, K., Chang, S.Y., and Hong, Y., 2004. Continuous slab caster scheduling and interval graphs. Production Planning & Control, 13 (5), 495–501) have introduced a slab caster scheduling problem and developed an optimal algorithm. Their algorithm is efficient but an offline algorithm that we need the information on all the customer orders a priori to implement. In this article, we propose an online algorithm that we can implement without knowledge of the orders yet to arrive. We show that the offline version of our new algorithm also provides an optimal solution and the online version has the worst case performance ratio of 3. We also give a short proof on the correctness of Lee et al.'s algorithm.  相似文献   

14.
The Hospitals/Residents problem with Couples (HRC) is a generalisation of the classical Hospitals/Residents problem (HR) that is important in practical applications because it models the case where couples submit joint preference lists over pairs of hospitals (h i ,h j ). We consider a natural restriction of HRC in which the members of a couple have individual preference lists over hospitals, and the joint preference list of the couple is consistent with these individual lists in a precise sense. We give an appropriate stability definition and show that, in this context, the problem of deciding whether a stable matching exists is NP-complete, even if each resident’s preference list has length at most 3 and each hospital has capacity at most 2. However, with respect to classical (Gale-Shapley) stability, we give a linear-time algorithm to find a stable matching or report that none exists, regardless of the preference list lengths or the hospital capacities. Finally, for an alternative formulation of our restriction of HRC, which we call the Hospitals/Residents problem with Sizes (HRS), we give a linear-time algorithm that always finds a stable matching for the case that hospital preference lists are of length at most 2, and where hospital capacities can be arbitrary.  相似文献   

15.
Given a graph G=(V,E) with node weight w:VR + and a subset SV, find a minimum total weight tree interconnecting all nodes in S. This is the node-weighted Steiner tree problem which will be studied in this paper. In general, this problem is NP-hard and cannot be approximated by a polynomial time algorithm with performance ratio aln n for any 0<a<1 unless NPDTIME(n O(log n)), where n is the number of nodes in s. In this paper, we are the first to show that even though for unit disk graphs, the problem is still NP-hard and it has a polynomial time constant approximation. We present a 2.5ρ-approximation where ρ is the best known performance ratio for polynomial time approximation of classical Steiner minimum tree problem in graphs. As a corollary, we obtain that there is a polynomial time (9.875+ε)-approximation algorithm for minimum weight connected dominating set in unit disk graphs, and also there is a polynomial time (4.875+ε)-approximation algorithm for minimum weight connected vertex cover in unit disk graphs.  相似文献   

16.
The multiple weighted hitting set problem is to find a subset of nodes in a hypergraph that hits every hyperedge in at least m nodes. We extend the problem to a notion of hypergraphs with so-called hypernodes and show that, for m=2, it remains fixed-parameter tractable (FPT), parameterized by the number of hyperedges. This is accomplished by a nontrivial extension of the dynamic programming algorithm for hypergraphs. The algorithm might be interesting for certain assignment problems, but here we need it as a tool to solve another problem motivated by network analysis: A d-core of a graph is a subgraph in which every vertex has at least d neighbors. We give an FPT algorithm that computes a smallest 2-core including a given set of target vertices, where the number of targets is the parameter. This FPT result is best possible in the sense that no FPT algorithm for 3-cores can be expected.  相似文献   

17.
Almost optimal solutions for bin coloring problems   总被引:1,自引:1,他引:0  
In this paper we study two interesting bin coloring problems: Minimum Bin Coloring Problem (MinBC) and Online Maximum Bin Coloring Problem (OMaxBC), motivated from several applications in networking. For the MinBC problem, we present two near linear time approximation algorithms to achieve almost optimal solutions, i.e., no more than OPT+2 and OPT+1 respectively, where OPT is the optimal solution. For the OMaxBC problem, we first introduce a deterministic 2-competitive greedy algorithm, and then give lower bounds for any deterministic and randomized (against adaptive offline adversary) online algorithms. The lower bounds show that our deterministic algorithm achieves the best possible competitive ratio. The research of this paper was partially supported by an NSF CAREER award CCF-0546509.  相似文献   

18.
This paper solves the problem of increasing the edge-connectivity of a bipartite digraph by adding the smallest number of new edges that preserve bipartiteness. A natural application arises when we wish to reinforce a 2-dimensional square grid framework with cables. We actually solve the more general problem of covering a crossing family of sets with the smallest number of directed edges, where each new edge must join the blocks of a given bipartition of the elements. The smallest number of new edges is given by a min-max formula that has six infinite families of exceptional cases. We discuss a problem on network flows whose solution has a similar formula with three infinite families of exceptional cases. We also discuss a problem on arborescences whose solution has five infinite families of exceptions. We give an algorithm that increases the edge-connectivity of a bipartite digraph in the same time as the best-known algorithm for the problem without the bipartite constraint: O(km log n) for unweighted digraphs and O(nm log (n 2/m)) for weighted digraphs, where n, m and k are the number of vertices and edges of the given graph and the target connectivity, respectively.  相似文献   

19.
In this paper, we consider the problem of enumerating all maximal motifs in an input string for the class of repeated motifs with wild cards. A maximal motif is such a representative motif that is not properly contained in any larger motifs with the same location lists. Although the enumeration problem for maximal motifs with wild cards has been studied in Parida et al. (2001), Pisanti et al. (2003) and Pelfrêne et al. (2003), its output-polynomial time computability has been still open. The main result of this paper is a polynomial space polynomial delay algorithm for the maximal motif enumeration problem for the repeated motifs with wild cards. This algorithm enumerates all maximal motifs in an input string of length n in O(n 3) time per motif with O(n) space, in particular O(n 3) delay. The key of the algorithm is depth-first search on a tree-shaped search route over all maximal motifs based on a technique called prefix-preserving closure extension. We also show an exponential lower bound and a succinctness result on the number of maximal motifs, which indicate the limit of a straightforward approach. The results of the computational experiments show that our algorithm can be applicable to huge string data such as genome data in practice, and does not take large additional computational cost compared to usual frequent motif mining algorithms. This work is done during the Hiroki Arimura’s visit in LIRIS, University Claude-Bernard Lyon 1, France.  相似文献   

20.
Preemptive Machine Covering on Parallel Machines   总被引:2,自引:0,他引:2  
This paper investigates the preemptive parallel machine scheduling to maximize the minimum machine completion time. We first show the off-line version can be solved in O(mn) time for general m-uniform-machine case. Then we study the on-line version. We show that any randomized on-line algorithm must have a competitive ratio m for m-uniform-machine case and ∑i = 1m1/i for m-identical-machine case. Lastly, we focus on two-uniform-machine case. We present an on-line deterministic algorithm whose competitive ratio matches the lower bound of the on-line problem for every machine speed ratio s≥ 1. We further consider the case that idle time is allowed to be introduced in the procedure of assigning jobs and the objective becomes to maximize the continuous period of time (starting from time zero) when both machines are busy. We present an on-line deterministic algorithm whose competitive ratio matches the lower bound of the problem for every s≥ 1. We show that randomization does not help.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号