共查询到20条相似文献,搜索用时 0 毫秒
1.
Dallas R. Wingo 《统计学通讯:模拟与计算》2013,42(2):201-212
The log-likelihood function (LLF) of the single (location) parameter Cauchy distribution can exhibit up to n relative maxima, where n is the sample size. To compute the maximum likelihood estimate of the location parameter, previously published methods have advocated scanning the LLF over a suf-ficiently large portion of the real line to locate the absolute maximum. This note shows that, given an easily derived upper bound on the second derivative of the negative LLF, Brent's univariate numerical global optimization method can be used to locate the absolute maximum among several relative maxima of the LLF without performing an exhaustive search over the real line. 相似文献
2.
《Journal of Statistical Computation and Simulation》2012,82(9):1099-1109
The aim of the paper is to study the pooled estimator of the shape parameter of the three parameter gamma distribution when k independent samples are available. Sufficient conditions for the existence of the pooled estimator are given and the small as well as the large sample properties are studied. The harmonic mean of the k estimators of the independent samples is proposed in the place of the pooled estimator, in the case in which the latter does not exist. 相似文献
3.
This paper deals with improved estimation of a gamma shape parameter from a decision-theoretic point of view. First we study the second-order properties of three estimators – (i) the maximum-likelihood estimator (MLE), (ii) a bias corrected version of the MLE, and (iii) an improved version (in terms of mean squared error) of the MLE. It is shown that all the three estimators mentioned above are second-order inadmissible. Next, we obtain superior estimators which are second order better than the above three estimators. Simulation results are provided to study the relative risk improvement of each improved estimator over the MLE. 相似文献
4.
O. Brian Allen 《Revue canadienne de statistique》1983,11(2):109-118
The asymptotic properties of the maximum-likelihood estimator of the parameter vector for a class of birth-and-death processes admitting a unique stationary distribution are studied. Also, it is shown that identifiability of the parameter vector with respect to the likelihood implies that the Fisher information matrix is of full rank. Two special cases of biological interest are presented. One of these, the exponential birth-and-death process, is proposed as a more appropriate model of density dependence than the logistic process. 相似文献
5.
In this paper, we consider an estimation for the unknown parameters of a conditional Gaussian MA(1) model. In the majority of cases, a maximum-likelihood estimator is chosen because the estimator is consistent. However, for small sample sizes the error is large, because the estimator has a bias of O(n? 1). Therefore, we provide a bias of O(n? 1) for the maximum-likelihood estimator for the conditional Gaussian MA(1) model. Moreover, we propose new estimators for the unknown parameters of the conditional Gaussian MA(1) model based on the bias of O(n? 1). We investigate the properties of the bias, as well as the asymptotical variance of the maximum-likelihood estimators for the unknown parameters, by performing some simulations. Finally, we demonstrate the validity of the new estimators through this simulation study. 相似文献
6.
In this paper, attention is focused on estimation of the location parameter in the double exponential case using a weighted linear combination of the sample median and pairs of order statistics, with symmetric distance to both sides from the sample median. Minimizing with respect to weights and distances we get smaller asymptotic variance in the second order. If the number of pairs is taken as infinite and the distances as null we attain the least asymptotic variance in this class of estimators. The Pitman estimator is also noted. Similarly improved estimators are scanned over their probability of concentration to investigate its bound. Numerical comparison of the estimators is shown. 相似文献
7.
This paper concludes our comprehensive study on point estimation of model parameters of a gamma distribution from a second-order decision theoretic point of view. It should be noted that efficient estimation of gamma model parameters for samples ‘not large’ is a challenging task since the exact sampling distributions of the maximum likelihood estimators and its variants are not known. Estimation of a gamma scale parameter has received less attention from the earlier researchers compared to shape parameter estimation. What we have observed here is that improved estimation of the shape parameter does not necessarily lead to improved scale estimation if a natural moment condition (which is also the maximum likelihood restriction) is satisfied. Therefore, this work deals with the gamma scale parameter estimation as a separate new problem, not as a by-product of the shape parameter estimation, and studies several estimators in terms of second-order risk. 相似文献
8.
9.
Ryan T. Godwin 《统计学通讯:理论与方法》2013,42(7):1887-1901
ABSTRACTWe derive an analytic expression for the bias of the maximum likelihood estimator of the parameter in a doubly-truncated Poisson distribution, which proves highly effective as a means of bias correction. For smaller sample sizes, our method outperforms the alternative of bias correction via the parametric bootstrap. Bias is of little concern in the positive Poisson distribution, the most common form of truncation in the applied literature. Bias appears to be the most severe in the doubly-truncated Poisson distribution, when the mean of the distribution is close to the right (upper) truncation. 相似文献
10.
The distribution of the Liu-type estimator of the biasing parameter in elliptically contoured models
We derive the density function of the stochastic shrinkage parameters of the Liu-type estimator in elliptical models. The correctness of derivation is checked by simulations. A real data application is also provided. 相似文献
11.
《Journal of the Korean Statistical Society》2014,43(1):119-131
In this paper, we consider the maximum likelihood estimator (MLE) of the scale parameter of the generalized exponential (GE) distribution based on a random censoring model. We assume the censoring distribution also follows a GE distribution. Since the estimator does not provide an explicit solution, we propose a simple method of deriving an explicit estimator by approximating the likelihood function. In order to compare the performance of the estimators, Monte Carlo simulation is conducted. The results show that the MLE and the approximate MLE are almost identical in terms of bias and variance. 相似文献
12.
Kazuhiro Ohtani 《统计学通讯:理论与方法》2013,42(10):2863-2876
In this paper, we derive the exact distribution and density functions of the Stein-type estimator for the normal variance. It is shown by numerical evaluation that the density function of the Stein-type estimator is unimodal and concentrates around the mode more than that of the usual estimator. 相似文献
13.
《Journal of Statistical Computation and Simulation》2012,82(8):1635-1642
In this paper exact confidence intervals (CIs) for the shape parameter of the gamma distribution are constructed using the method of Bølviken and Skovlund [Confidence intervals from Monte Carlo tests. J Amer Statist Assoc. 1996;91:1071–1078]. The CIs which are based on the maximum likelihood estimator or the moment estimator are compared to bootstrap CIs via a simulation study. 相似文献
14.
George Tzavelas Demosthenes Panagiotakos 《Journal of Statistical Computation and Simulation》2013,83(7):1252-1265
In this paper, statistical inferences for the size-biased Weibull distribution in two different cases are drawn. In the first case where the size r of the bias is considered known, it is proven that the maximum-likelihood estimators (MLEs) always exist. In the second case where the size r is considered as an unknown parameter, the estimating equations for the MLEs are presented and the Fisher information matrix is found. The estimation with the method of moments can be utilized in the case the MLEs do not exist. The advantage of treating r as an unknown parameter is that it allows us to perform tests concerning the existence of size-bias in the sample. Finally a program in Mathematica is written which provides all the statistical results from the procedures developed in this paper. 相似文献
15.
We develop and evaluate analytic and bootstrap bias-corrected maximum-likelihood estimators for the shape parameter in the Nakagami distribution. This distribution is widely used in a variety of disciplines, and the corresponding estimator of its scale parameter is trivially unbiased. We find that both ‘corrective’ and ‘preventive’ analytic approaches to eliminating the bias, to O(n ?2), are equally, and extremely, effective and simple to implement. As a bonus, the sizeable reduction in bias comes with a small reduction in the mean-squared error. Overall, we prefer analytic bias corrections in the case of this estimator. This preference is based on the relative computational costs and the magnitudes of the bias reductions that can be achieved in each case. Our results are illustrated with two real-data applications, including the one which provides the first application of the Nakagami distribution to data for ocean wave heights. 相似文献
16.
Bias Corrected Maximum Likelihood Estimator Under the Generalized Linear Model for a Binary Variable
Under the generalized linear models for a binary variable, an approximate bias of the maximum likelihood estimator of the coefficient, that is a special case of linear parameter in Cordeiro and McCullagh (1991), is derived without a calculation of the third-order derivative of the log likelihood function. Using the obtained approximate bias of the maximum likelihood estimator, a bias-corrected maximum likelihood estimator is defined. Through a simulation study, we show that the bias-corrected maximum likelihood estimator and its variance estimator have a better performance than the maximum likelihood estimator and its variance estimator. 相似文献
17.
18.
Consider the problem of estimating the common location parameter of two exponential populations using record data when the scale parameters are unknown. We derive the maximum likelihood estimator (MLE), the modified maximum likelihood estimator (MMLE) and the uniformly minimum variance unbiased estimator (UMVUE) of the common location parameter. Further, we derive a general result for inadmissibility of an equivariant estimator under the scaled-squared error loss function. Using this result, we conclude that the MLE and the UMVUE are inadmissible and better estimators are provided. A simulation study is conducted for comparing the performances of various competing estimators. 相似文献
19.
Badiollah R. Asrabadi 《统计学通讯:理论与方法》2013,42(3):713-733
The exact distribution of the sample median, and of the maximum likelihood estimator of the scale parameter of the Laplace distribution is derived. Tables of Teans, variances and the distribution functions of the corresponding dislributions are evaluacted. Exact ,solutions to the problem of confidence interval and hypothesrs testing for the scale paramrter are provided. The minimum variance unbiased estimator (MVUE) of the p.d.f. of the Laplace distribution when the location parameter is known is also given. 相似文献