首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
2.
We consider the use of Monte Carlo methods to obtain maximum likelihood estimates for random effects models and distinguish between the pointwise and functional approaches. We explore the relationship between the two approaches and compare them with the EM algorithm. The functional approach is more ambitious but the approximation is local in nature which we demonstrate graphically using two simple examples. A remedy is to obtain successively better approximations of the relative likelihood function near the true maximum likelihood estimate. To save computing time, we use only one Newton iteration to approximate the maximiser of each Monte Carlo likelihood and show that this is equivalent to the pointwise approach. The procedure is applied to fit a latent process model to a set of polio incidence data. The paper ends by a comparison between the marginal likelihood and the recently proposed hierarchical likelihood which avoids integration altogether.  相似文献   

3.
Maximum likelihood estimation of a mean and a covariance matrix whose structure is constrained only to general positive semi-definiteness is treated in this paper. Necessary and sufficient conditions for the local optimality of mean and covariance matrix estimates are given. Observations are assumed to be independent. When the observations are also assumed to be identically distributed, the optimality conditions are used to obtain the mean and covariance matrix solutions in closed form. For the nonidentically distributed observation case, a general numerical technique which integrates scoring and Newton's iterations to solve the optimality condition equations is presented, and convergence performance is examined.  相似文献   

4.
The seemingly unrelated regression model is viewed in the context of repeated measures analysis. Regression parameters and the variance-covariance matrix of the seemingly unrelated regression model can be estimated by using two-stage Aitken estimation. The first stage is to obtain a consistent estimator of the variance-covariance matrix. The second stage uses this matrix to obtain the generalized least squares estimators of the regression parameters. The maximum likelihood (ML) estimators of the regression parameters can be obtained by performing the two-stage estimation iteratively. The iterative two-stage estimation procedure is shown to be equivalent to the EM algorithm (Dempster, Laird, and Rubin, 1977) proposed by Jennrich and Schluchter (1986) and Laird, Lange, and Stram (1987) for repeated measures data. The equivalence of the iterative two-stage estimator and the ML estimator has been previously demonstrated empirically in a Monte Carlo study by Kmenta and Gilbert (1968). It does not appear to be widely known that the two estimators are equivalent theoretically. This paper demonstrates this equivalence.  相似文献   

5.
The authors propose a reduction technique and versions of the EM algorithm and the vertex exchange method to perform constrained nonparametric maximum likelihood estimation of the cumulative distribution function given interval censored data. The constrained vertex exchange method can be used in practice to produce likelihood intervals for the cumulative distribution function. In particular, the authors show how to produce a confidence interval with known asymptotic coverage for the survival function given current status data.  相似文献   

6.
Incomplete growth curve data often result from missing or mistimed observations in a repeated measures design. Virtually all methods of analysis rely on the dispersion matrix estimates. A Monte Carlo simulation was used to compare three methods of estimation of dispersion matrices for incomplete growth curve data. The three methods were: 1) maximum likelihood estimation with a smoothing algorithm, which finds the closest positive semidefinite estimate of the pairwise estimated dispersion matrix; 2) a mixed effects model using the EM (estimation maximization) algorithm; and 3) a mixed effects model with the scoring algorithm. The simulation included 5 dispersion structures, 20 or 40 subjects with 4 or 8 observations per subject and 10 or 30% missing data. In all the simulations, the smoothing algorithm was the poorest estimator of the dispersion matrix. In most cases, there were no significant differences between the scoring and EM algorithms. The EM algorithm tended to be better than the scoring algorithm when the variances of the random effects were close to zero, especially for the simulations with 4 observations per subject and two random effects.  相似文献   

7.
8.
In some applications of statistical quality control, quality of a process or a product is best characterized by a functional relationship between a response variable and one or more explanatory variables. This relationship is referred to as a profile. In certain cases, the quality of a process or a product is better described by a non-linear profile which does not follow a specific parametric model. In these circumstances, nonparametric approaches with greater flexibility in modeling the complicated profiles are adopted. In this research, the spline smoothing method is used to model a complicated non-linear profile and the Hotelling T2 control chart based on the spline coefficients is used to monitor the process. After receiving an out-of-control signal, a maximum likelihood estimator is employed for change point estimation. The simulation studies, which include both global and local shifts, provide appropriate evaluation of the performance of the proposed estimation and monitoring procedure. The results indicate that the proposed method detects large global shifts while it is very sensitive in detecting local shifts.  相似文献   

9.
In this paper we develop a regression model for survival data in the presence of long-term survivors based on the generalized Gompertz distribution introduced by El-Gohary et al. [The generalized Gompertz distribution. Appl Math Model. 2013;37:13–24] in a defective version. This model includes as special case the Gompertz cure rate model proposed by Gieser et al. [Modelling cure rates using the Gompertz model with covariate information. Stat Med. 1998;17:831–839]. Next, an expectation maximization algorithm is then developed for determining the maximum likelihood estimates (MLEs) of the parameters of the model. In addition, we discuss the construction of confidence intervals for the parameters using the asymptotic distributions of the MLEs and the parametric bootstrap method, and assess their performance through a Monte Carlo simulation study. Finally, the proposed methodology was applied to a database on uterine cervical cancer.  相似文献   

10.
The EM algorithm is a popular method for computing maximum likelihood estimates or posterior modes in models that can be formulated in terms of missing data or latent structure. Although easy implementation and stable convergence help to explain the popularity of the algorithm, its convergence is sometimes notoriously slow. In recent years, however, various adaptations have significantly improved the speed of EM while maintaining its stability and simplicity. One especially successful method for maximum likelihood is known as the parameter expanded EM or PXEM algorithm. Unfortunately, PXEM does not generally have a closed form M-step when computing posterior modes, even when the corresponding EM algorithm is in closed form. In this paper we confront this problem by adapting the one-step-late EM algorithm to PXEM to establish a fast closed form algorithm that improves on the one-step-late EM algorithm by insuring monotone convergence. We use this algorithm to fit a probit regression model and a variety of dynamic linear models, showing computational savings of as much as 99.9%, with the biggest savings occurring when the EM algorithm is the slowest to converge.  相似文献   

11.
Mixed-Weibull distribution has been used to model a wide range of failure data sets, and in many practical situations the number of components in a mixture model is unknown. Thus, the parameter estimation of a mixed-Weibull distribution is considered and the important issue of how to determine the number of components is discussed. Two approaches are proposed to solve this problem. One is the method of moments and the other is a regularization type of fuzzy clustering algorithm. Finally, numerical examples and two real data sets are given to illustrate the features of the proposed approaches.  相似文献   

12.
In this paper, we study the estimation and inference for a class of semiparametric mixtures of partially linear models. We prove that the proposed models are identifiable under mild conditions, and then give a PL–EM algorithm estimation procedure based on profile likelihood. The asymptotic properties for the resulting estimators and the ascent property of the PL–EM algorithm are investigated. Furthermore, we develop a test statistic for testing whether the non parametric component has a linear structure. Monte Carlo simulations and a real data application highlight the interest of the proposed procedures.  相似文献   

13.
Many of today's specialized applicational tasks are obliged to consider the influence of inevitable errors in the identification of parameters appearing in a model. Favourable results can also be achieved through measuring, and then accounting for definite (e.g. current) values of factors which show a significant reaction to the values of those parameters. This paper is dedicated to the problem of the estimation of a vector of parameters, where losses resulting from their under- and overestimation are asymmetric and mutually correlated. The issue is considered from a supplementary conditional aspect, where particular coordinates of conditioning variables may be continuous, discrete, multivalued (in particular binary) or categorized (ordered and unordered). The final result is a ready-to-use algorithm for calculating the value of an estimator, optimal in the sense of minimum expectation of losses using a multidimensional asymmetric quadratic function, for practically any distributions of describing and conditioning variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号