首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Spatiotemporal prediction is of interest in many areas of applied statistics, especially in environmental monitoring with on-line data information. At first, this article reviews the approaches for spatiotemporal modeling in the context of stochastic processes and then introduces the new class of spatiotemporal dynamic linear models. Further, the methods for linear spatial data analysis, universal kriging and trend surface prediction, are related to the method of spatial linear Bayesian analysis. The Kalman filter is the preferred method for temporal linear Bayesian inferences. By combining the Kalman filter recursions with the trend surface predictor and universal kriging predictor, the prior and posterior spatiotemporal predictors for the observational process are derived, which form the main result of this article. The problem of spatiotemporal linear prediction in the case of unknown first and second order moments is treated as well.  相似文献   

2.
In longitudinal data where the timing and frequency of the measurement of outcomes may be associated with the value of the outcome, significant bias can occur. Previous results depended on correct specification of the outcome process and a somewhat unrealistic visit process model. In practice, this will never exactly be the case, so it is important to understand to what degree the results hold when those assumptions are violated in order to guide practical use of the methods. This paper presents theory and the results of simulation studies to extend our previous work to more realistic visit process models, as well as Poisson outcomes. We also assess the effects of several types of model misspecification. The estimated bias in these new settings generally mirrors the theoretical and simulation results of our previous work and provides confidence in using maximum likelihood methods in practice. Even when the assumptions about the outcome process did not hold, mixed effects models fit by maximum likelihood produced at most small bias in estimated regression coefficients, illustrating the robustness of these methods. This contrasts with generalised estimating equations approaches where bias increased in the settings of this paper. The analysis of data from a study of change in neurological outcomes following microsurgery for a brain arteriovenous malformation further illustrate the results.  相似文献   

3.
Abstract

In this paper we study the predictor behaviour of the additive model. The prediction equation is introduced as well as the computational considerations to select the smoothing parameters through cross-validation. The additive predictor is compared with a partially linear predictor in a broad simulation study and an application to a real case, prediction of the atmospheric concentration of SO2 in sample stations.  相似文献   

4.
Clustered multinomial data with random cluster sizes commonly appear in health, environmental and ecological studies. Traditional approaches for analyzing clustered multinomial data contemplate two assumptions. One of these assumptions is that cluster sizes are fixed, whereas the other demands cluster sizes to be positive. Randomness of the cluster sizes may be the determinant of the within-cluster correlation and between-cluster variation. We propose a baseline-category mixed model for clustered multinomial data with random cluster sizes based on Poisson mixed models. Our orthodox best linear unbiased predictor approach to this model depends only on the moment structure of unobserved distribution-free random effects. Our approach also consolidates the marginal and conditional modeling interpretations. Unlike the traditional methods, our approach can accommodate both random and zero cluster sizes. Two real-life multinomial data examples, crime data and food contamination data, are used to manifest our proposed methodology.  相似文献   

5.
Sufficient dimension reduction methods aim to reduce the dimensionality of predictors while preserving regression information relevant to the response. In this article, we develop Minimum Average Deviance Estimation (MADE) methodology for sufficient dimension reduction. The purpose of MADE is to generalize Minimum Average Variance Estimation (MAVE) beyond its assumption of additive errors to settings where the outcome follows an exponential family distribution. As in MAVE, a local likelihood approach is used to learn the form of the regression function from the data and the main parameter of interest is a dimension reduction subspace. To estimate this parameter within its natural space, we propose an iterative algorithm where one step utilizes optimization on the Stiefel manifold. MAVE is seen to be a special case of MADE in the case of Gaussian outcomes with a common variance. Several procedures are considered to estimate the reduced dimension and to predict the outcome for an arbitrary covariate value. Initial simulations and data analysis examples yield encouraging results and invite further exploration of the methodology.  相似文献   

6.
In this article we introduce a general approach to dynamic path analysis. This is an extension of classical path analysis to the situation where variables may be time-dependent and where the outcome of main interest is a stochastic process. In particular we will focus on the survival and event history analysis setting where the main outcome is a counting process. Our approach will be especially fruitful for analyzing event history data with internal time-dependent covariates, where an ordinary regression analysis may fail. The approach enables us to describe how the effect of a fixed covariate partly is working directly and partly indirectly through internal time-dependent covariates. For the sequence of times of event, we define a sequence of path analysis models. At each time of an event, ordinary linear regression is used to estimate the relation between the covariates, while the additive hazard model is used for the regression of the counting process on the covariates. The methodology is illustrated using data from a randomized trial on survival for patients with liver cirrhosis.  相似文献   

7.
Abstract.  Mixed model based approaches for semiparametric regression have gained much interest in recent years, both in theory and application. They provide a unified and modular framework for penalized likelihood and closely related empirical Bayes inference. In this article, we develop mixed model methodology for a broad class of Cox-type hazard regression models where the usual linear predictor is generalized to a geoadditive predictor incorporating non-parametric terms for the (log-)baseline hazard rate, time-varying coefficients and non-linear effects of continuous covariates, a spatial component, and additional cluster-specific frailties. Non-linear and time-varying effects are modelled through penalized splines, while spatial components are treated as correlated random effects following either a Markov random field or a stationary Gaussian random field prior. Generalizing existing mixed model methodology, inference is derived using penalized likelihood for regression coefficients and (approximate) marginal likelihood for smoothing parameters. In a simulation we study the performance of the proposed method, in particular comparing it with its fully Bayesian counterpart using Markov chain Monte Carlo methodology, and complement the results by some asymptotic considerations. As an application, we analyse leukaemia survival data from northwest England.  相似文献   

8.
Markov random fields (MRFs) express spatial dependence through conditional distributions, although their stochastic behavior is defined by their joint distribution. These joint distributions are typically difficult to obtain in closed form, the problem being a normalizing constant that is a function of unknown parameters. The Gaussian MRF (or conditional autoregressive model) is one case where the normalizing constant is available in closed form; however, when sample sizes are moderate to large (thousands to tens of thousands), and beyond, its computation can be problematic. Because the conditional autoregressive (CAR) model is often used for spatial-data modeling, we develop likelihood-inference methodology for this model in situations where the sample size is too large for its normalizing constant to be computed directly. In particular, we use simulation methodology to obtain maximum likelihood estimators of mean, variance, and spatial-depencence parameters (including their asymptotic variances and covariances) of CAR models.  相似文献   

9.
The sensitivity of multiple imputation methods to deviations from their distributional assumptions is investigated using simulations, where the parameters of scientific interest are the coefficients of a linear regression model, and values in predictor variables are missing at random. The performance of a newly proposed imputation method based on generalized additive models for location, scale, and shape (GAMLSS) is investigated. Although imputation methods based on predictive mean matching are virtually unbiased, they suffer from mild to moderate under-coverage, even in the experiment where all variables are jointly normal distributed. The GAMLSS method features better coverage than currently available methods.  相似文献   

10.
In this work, we develop modeling and estimation approach for the analysis of cross-sectional clustered data with multimodal conditional distributions where the main interest is in analysis of subpopulations. It is proposed to model such data in a hierarchical model with conditional distributions viewed as finite mixtures of normal components. With a large number of observations in the lowest level clusters, a two-stage estimation approach is used. In the first stage, the normal mixture parameters in each lowest level cluster are estimated using robust methods. Robust alternatives to the maximum likelihood estimation are used to provide stable results even for data with conditional distributions such that their components may not quite meet normality assumptions. Then the lowest level cluster-specific means and standard deviations are modeled in a mixed effects model in the second stage. A small simulation study was conducted to compare performance of finite normal mixture population parameter estimates based on robust and maximum likelihood estimation in stage 1. The proposed modeling approach is illustrated through the analysis of mice tendon fibril diameters data. Analyses results address genotype differences between corresponding components in the mixtures and demonstrate advantages of robust estimation in stage 1.  相似文献   

11.
Following the extension from linear mixed models to additive mixed models, extension from generalized linear mixed models to generalized additive mixed models is made, Algorithms are developed to compute the MLE's of the nonlinear effects and the covariance structures based on the penalized marginal likelihood. Convergence of the algorithms and selection of the smooth param¬eters are discussed.  相似文献   

12.
A structural regression model is considered in which some of the variables are measured with error. Instead of additive measurement errors, systematic biases are allowed by relating true and observed values via simple linear regressions. Additional data is available, based on standards, which allows for “calibration” of the measuring methods involved. Using only moment assumptions, some simple estimators are proposed and their asymptotic properties are developed. The results parallel and extend those given by Fuller (1987) in which the errors are additive and the error covariance is estimated. Maximum likelihood estimation is also discussed and the problem is illustrated using data from an acid rain study in which the relationship between pH and alkalinity is of interest but neither variable is observed exactly.  相似文献   

13.
We develop Mean Field Variational Bayes methodology for fast approximate inference in Bayesian Generalized Extreme Value additive model analysis. Such models are useful for flexibly assessing the impact of continuous predictor variables on sample extremes. The new methodology allows large Bayesian models to be fitted and assessed without the significant computing costs of Markov Chain Monte Carlo methods. We illustrate our new methodology with maximum rainfall data from the Sydney, Australia, hinterland. Comparisons are made between the Mean Field Variational Bayes and Markov Chain Monte Carlo approaches.  相似文献   

14.
Summary.  Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models , where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged.  相似文献   

15.
《统计学通讯:理论与方法》2012,41(16-17):3259-3277
Real data may expose a larger (or smaller) variability than assumed in an exponential family modeling, the basis of Generalized linear models and additive models. To analyze such data, smooth estimation of the mean and the dispersion function has been introduced in extended generalized additive models using P-splines techniques. This methodology is further explored here by allowing for the modeling of some of the covariates parametrically and some nonparametrically. The main contribution in this article is a simulation study investigating the finite-sample performance of the P-spline estimation technique in these extended models, including comparisons with a standard generalized additive modeling approach, as well as with a hierarchical modeling approach.  相似文献   

16.
17.
Hierarchical binary outcome data with three levels, such as disease remission for patients nested within physicians, nested within clinics are frequently encountered in practice. One important aspect in such data is the correlation that occurs at each level of the data. In parametric modeling, accounting for these correlations increases the complexity. These models may also yield results that lead to the same conclusions as simpler models. We developed a measure of intraclass correlation at each stage of a three-level nested structure and identified guidelines for determining when the dependencies in hierarchical models need to be taken into account. These guidelines are supported by simulations of hierarchical data sets, as well as the analysis of AIDS knowledge in Bangladesh from the 2011 Demographic Health Survey. We also provide a simple rule of thumb to assist researchers faced with the challenge of choosing an appropriately complex model when analyzing hierarchical binary data.  相似文献   

18.
Likelihood-based, mixed-effects models for repeated measures (MMRMs) are occasionally used in primary analyses for group comparisons of incomplete continuous longitudinal data. Although MMRM analysis is generally valid under missing-at-random assumptions, it is invalid under not-missing-at-random (NMAR) assumptions. We consider the possibility of bias of estimated treatment effect using standard MMRM analysis in a motivational case, and propose simple and easily implementable pattern mixture models within the framework of mixed-effects modeling, to handle the NMAR data with differential missingness between treatment groups. The proposed models are a new form of pattern mixture model that employ a categorical time variable when modeling the outcome and a continuous time variable when modeling the missingness-data patterns. The models can directly provide an overall estimate of the treatment effect of interest using the average of the distribution of the missingness indicator and a categorical time variable in the same manner as MMRM analysis. Our simulation results indicate that the bias of the treatment effect for MMRM analysis was considerably larger than that for the pattern mixture model analysis under NMAR assumptions. In the case study, it would be dangerous to interpret only the results of the MMRM analysis, and the proposed pattern mixture model would be useful as a sensitivity analysis for treatment effect evaluation.  相似文献   

19.
The main topic of the paper is on-line filtering for non-Gaussian dynamic (state space) models by approximate computation of the first two posterior moments using efficient numerical integration. Based on approximating the prior of the state vector by a normal density, we prove that the posterior moments of the state vector are related to the posterior moments of the linear predictor in a simple way. For the linear predictor Gauss-Hermite integration is carried out with automatic reparametrization based on an approximate posterior mode filter. We illustrate how further topics in applied state space modelling, such as estimating hyperparameters, computing model likelihoods and predictive residuals, are managed by integration-based Kalman-filtering. The methodology derived in the paper is applied to on-line monitoring of ecological time series and filtering for small count data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号