首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactor accident consequence models have been developed (for example, the CRAC model of the Reactor Safety Study (RSS), WASH-1400) to predict the offsite health and economic consequences of severe accidents at a reactor site with generic demographic and meteorological characteristics. Application of a revised RSS accident consequence model, CRAC2, to 91 existing sites results in a band of risk curves around the earlier WASH-1400 average reactor/site predictions. This paper examines these calculations and important model assumptions such as population distribution, emergency response, and meteorological data with respect to their effects on site risk extremes—that is, the combination of high consequence/low probability events.  相似文献   

2.
Sea levels are rising in many areas around the world, posing risks to coastal communities and infrastructures. Strategies for managing these flood risks present decision challenges that require a combination of geophysical, economic, and infrastructure models. Previous studies have broken important new ground on the considerable tensions between the costs of upgrading infrastructure and the damages that could result from extreme flood events. However, many risk-based adaptation strategies remain silent on certain potentially important uncertainties, as well as the tradeoffs between competing objectives. Here, we implement and improve on a classic decision-analytical model (Van Dantzig 1956) to: (i) capture tradeoffs across conflicting stakeholder objectives, (ii) demonstrate the consequences of structural uncertainties in the sea-level rise and storm surge models, and (iii) identify the parametric uncertainties that most strongly influence each objective using global sensitivity analysis. We find that the flood adaptation model produces potentially myopic solutions when formulated using traditional mean-centric decision theory. Moving from a single-objective problem formulation to one with multiobjective tradeoffs dramatically expands the decision space, and highlights the need for compromise solutions to address stakeholder preferences. We find deep structural uncertainties that have large effects on the model outcome, with the storm surge parameters accounting for the greatest impacts. Global sensitivity analysis effectively identifies important parameter interactions that local methods overlook, and that could have critical implications for flood adaptation strategies.  相似文献   

3.
The life cycle assessment (LCA) framework has established itself as the leading tool for the assessment of the environmental impact of products. Several works have established the need of integrating the LCA and risk analysis methodologies, due to the several common aspects. One of the ways to reach such integration is through guaranteeing that uncertainties in LCA modeling are carefully treated. It has been claimed that more attention should be paid to quantifying the uncertainties present in the various phases of LCA. Though the topic has been attracting increasing attention of practitioners and experts in LCA, there is still a lack of understanding and a limited use of the available statistical tools. In this work, we introduce a protocol to conduct global sensitivity analysis in LCA. The article focuses on the life cycle impact assessment (LCIA), and particularly on the relevance of global techniques for the development of trustable impact assessment models. We use a novel characterization model developed for the quantification of the impacts of noise on humans as a test case. We show that global SA is fundamental to guarantee that the modeler has a complete understanding of: (i) the structure of the model and (ii) the importance of uncertain model inputs and the interaction among them.  相似文献   

4.
Risk analysis often depends on complex, computer-based models to describe links between policies (e.g., required emission-control equipment) and consequences (e.g., probabilities of adverse health effects). Appropriate specification of many model aspects is uncertain, including details of the model structure; transport, reaction-rate, and other parameters; and application-specific inputs such as pollutant-release rates. Because these uncertainties preclude calculation of the precise consequences of a policy, it is important to characterize the plausible range of effects. In principle, a probability distribution function for the effects can be constructed using Monte Carlo analysis, but the combinatorics of multiple uncertainties and the often high cost of model runs quickly exhaust available resources. This paper presents and applies a method to choose sets of input conditions (scenarios) that efficiently represent knowledge about the joint probability distribution of inputs. A simple score function approximately relating inputs to a policy-relevant output—in this case, globally averaged stratospheric ozone depletion—is developed. The probability density function for the score-function value is analytically derived from a subjective joint probability density for the inputs. Scenarios are defined by selected quantiles of the score function. Using this method, scenarios can be systematically selected in terms of the approximate probability distribution function for the output of concern, and probability intervals for the joint effect of the inputs can be readily constructed.  相似文献   

5.
This article analyzes possible terrorist attacks on the ports of Los Angeles and Long Beach using a radiological dispersal device (RDD, also known as a "dirty bomb") to shut down port operations and cause substantial economic and psychological impacts. The analysis is an exploratory investigation of a combination of several risk analysis tools, including scenario generation and pruning, project risk analysis, direct consequence modeling, and indirect economic impact assessment. We examined 36 attack scenarios and reduced them to two plausible or likely scenarios using qualitative judgments. For these two scenarios, we conducted a project risk analysis to understand the tasks terrorists need to perform to carry out the attacks and to determine the likelihood of the project's success. The consequences of a successful attack are described in terms of a radiological plume model and resulting human health and economic impacts. Initial findings suggest that the chances of a successful dirty bomb attack are about 10-40% and that high radiological doses are confined to a relatively small area, limiting health effects to tens or at most hundreds of latent cancers, even with a major release. However, the economic consequences from a shutdown of the harbors due to the contamination could result in significant losses in the tens of billions of dollars, including the decontamination costs and the indirect economic impacts due to the port shutdown. The implications for countering a dirty bomb attack, including the protection of the radiological sources and intercepting an ongoing dirty bomb attack are discussed.  相似文献   

6.
Mills  William B.  Lew  Christine S.  Hung  Cheng Y. 《Risk analysis》1999,19(3):511-525
This paper describes the application of two multimedia models, PRESTO and MMSOILS, to predict contaminant migration from a landfill that contains an organic chemical (methylene chloride) and a radionuclide (uranium-238). Exposure point concentrations and human health risks are predicted, and distributions of those predictions are generated using Monte Carlo techniques. Analysis of exposure point concentrations shows that predictions of uranium-238 in groundwater differ by more than one order of magnitude between models. These differences occur mainly because PRESTO simulates uranium-238 transport through the groundwater using a one-dimensional algorithm and vertically mixes the plume over an effective mixing depth, whereas MMSOILS uses a three-dimensional algorithm and simulates a plume that resides near the surface of the aquifer.A sensitivity analysis, using stepwise multiple linear regression, is performed to evaluate which of the random variables are most important in producing the predicted distributions of exposure point concentrations and health risks. The sensitivity analysis shows that the predicted distributions can be accurately reproduced using a small subset of the random variables. Simple regression techniques are applied, for comparison, to the same scenarios, and results are similar. The practical implication of this analysis is the ability to distinguish between important versus unimportant random variables in terms of their sensitivity to selected endpoints.  相似文献   

7.
Industrial societies have altered the earth's environment in ways that could have important, long-term ecological, economic, and health implications. In this paper, we examine the extent to which uncertainty about global climate change could impact the precision of predictions of secondary outcomes such as health impacts of pollution. Using a model that links global climate change with predictions of chemical exposure and human health risk in the Western region of the United States of America (U.S.), we define parameter variabilities and uncertainties and we characterize the resulting outcome variance. As a case study, we consider the public health consequences from releases of hexachlorobenzene (HCB), a ubiquitous multimedia pollutant. By constructing a matrix that links global environmental change both directly and indirectly to potential human-health effects attributable to HCB released into air, soil, and water, we define critical parameter variances in the health risk estimation process. We employ a combined uncertainty/sensitivity analysis to investigate how HCB releases are affected by increasing atmospheric temperature and the accompanying climate alterations that are anticipated. We examine how such uncertainty impacts both the expected magnitude and calculational precision of potential human exposures and health effects. This assessment reveals that uncertain temperature increases of up to 5°C have little impact on either the magnitude or precision of the public-health consequences estimated under existing climate variations for HCB released into air and water in the Western region of the U.S.  相似文献   

8.
9.
Multicriteria decision analysis (MCDA) has been applied to various energy problems to incorporate a variety of qualitative and quantitative criteria, usually spanning environmental, social, engineering, and economic fields. MCDA and associated methods such as life‐cycle assessments and cost‐benefit analysis can also include risk analysis to address uncertainties in criteria estimates. One technology now being assessed to help mitigate climate change is carbon capture and storage (CCS). CCS is a new process that captures CO2 emissions from fossil‐fueled power plants and injects them into geological reservoirs for storage. It presents a unique challenge to decisionmakers (DMs) due to its technical complexity, range of environmental, social, and economic impacts, variety of stakeholders, and long time spans. The authors have developed a risk assessment model using a MCDA approach for CCS decisions such as selecting between CO2 storage locations and choosing among different mitigation actions for reducing risks. The model includes uncertainty measures for several factors, utility curve representations of all variables, Monte Carlo simulation, and sensitivity analysis. This article uses a CCS scenario example to demonstrate the development and application of the model based on data derived from published articles and publicly available sources. The model allows high‐level DMs to better understand project risks and the tradeoffs inherent in modern, complex energy decisions.  相似文献   

10.
《Risk analysis》2018,38(4):724-754
A bounding risk assessment is presented that evaluates possible human health risk from a hypothetical scenario involving a 10,000‐gallon release of flowback water from horizontal fracturing of Marcellus Shale. The water is assumed to be spilled on the ground, infiltrates into groundwater that is a source of drinking water, and an adult and child located downgradient drink the groundwater. Key uncertainties in estimating risk are given explicit quantitative treatment using Monte Carlo analysis. Chemicals that contribute significantly to estimated health risks are identified, as are key uncertainties and variables to which risk estimates are sensitive. The results show that hypothetical exposure via drinking water impacted by chemicals in Marcellus Shale flowback water, assumed to be spilled onto the ground surface, results in predicted bounds between 10−10 and 10−6 (for both adult and child receptors) for excess lifetime cancer risk. Cumulative hazard indices (HICUMULATIVE) resulting from these hypothetical exposures have predicted bounds (5th to 95th percentile) between 0.02 and 35 for assumed adult receptors and 0.1 and 146 for assumed child receptors. Predicted health risks are dominated by noncancer endpoints related to ingestion of barium and lithium in impacted groundwater. Hazard indices above unity are largely related to exposure to lithium. Salinity taste thresholds are likely to be exceeded before drinking water exposures result in adverse health effects. The findings provide focus for policy discussions concerning flowback water risk management. They also indicate ways to improve the ability to estimate health risks from drinking water impacted by a flowback water spill (i.e., reducing uncertainty).  相似文献   

11.
Refinements of methods for life cycle impact assessment (LCIA) are directed at removing unjustified simplifications and quantifying and reducing uncertainties in results. The amount of uncertainty reduction that is actually achieved through LCIA method refinement depends on the structure of the life cycle inventory model. We investigate the general structure of inventory models using an economic input/output (I/O) life cycle assessment model of the U.S. economy. In particular, we study the results of applying a streamlining algorithm to the I/O LCA model. The streamlining algorithm retains only those "branches" of the process tree that are jointly required to account for a specified fraction of the total impacts upstream of each point in the tree. We examine the implications of these "tree pruning" results for site-informed LCIA. Percentiles are presented for U.S. commodities and several important pollutants, for the share of total upstream emissions contributed by the set of processes in each supply tier, that is, each set of processes that directly supply inputs to another set of processes Capturing at least 90% of the total direct plus upstream emissions for criteria air pollutants and toxic releases for at least 75% of the commodities in the U.S. economy requires full modeling of direct emissions plus the first five supply tiers. The requirements for capturing a high percentage (e.g., >80%) of total emissions vary widely across products or commodities. To capture more than 60% of total emissions for more than half of all commodities requires models with more than 4,000 process instances. To well characterize the total impacts of products, life cycle impact assessment methods must characterize foreground process impacts in a site-informed way and mean impacts of far-removed processes in an unbiased way.  相似文献   

12.
A probabilistic risk analysis (PRA) for a high-level radioactive waste repository is very important since it gives an estimate of its health impacts, allowing comparisons to be made with the health impacts of competing technologies. However, it is extremely difficult to develop a credible PRA for a specific repository site because of large uncertainties in future climate, hydrology, geological processes, etc. At best, such a PRA would not be understandable to the public. An alternative proposed here is to develop a PRA for an average U.S. site, taking all properties of the site to be the U.S. average. The results are equivalent to the average results for numerous randomly selected sites. Such a PRA is presented here; it is easy to understand, and it is not susceptible to substantial uncertainty. Applying the results to a specific repository site then requires only a simple, intuitively acceptable "leap of faith" in assuming that with large expenditures of effort and money, experts can select a site that would be at least as secure as a randomly selected site.  相似文献   

13.
Over the past 20 years, several epidemiological studies have found an association between exposure to electromagnetic fields (EMFs) and health effects, including childhood leukemia and adult brain cancer. However, experts strongly disagree about whether this association is causal and, if so, how strong it is. In this article, we examine several alternatives to reduce EMFs from sources of the California power grid, including undergrounding distribution and transmission lines and reconfiguring or rephasing lines. The alternatives were evaluated in terms of the potential health risk reduction, cost, impacts on service reliability, property values, and many other consequences. Because of the uncertainty about an EMF-health link, the main effort was to determine the sensitivity of the decisions to the probability and seriousness of an EMF hazard. User-friendly computer models were developed to allow stakeholders to change the model assumptions and parameters to analyze the impacts of their own assumptions and estimates on the decision. The analysis clearly demonstrated that only four of the many concerns raised by the stakeholders could make a difference in the decision: health risks, costs, service reliability, and property values. Whether undergrounding, moderate alternatives for EMF reduction, or no change was the best decision depended on a few key factors, including the probability that EMF exposure is a hazard, the severity of this hazard, how the EMF reduction measures are financed, and the impacts on property values. While the analysis did not resolve the EMF issues, it showed that even in the most controversial settings, a little analysis goes a long way to clarifying the issues and to focus the debate.  相似文献   

14.
This article describes a simple model for quantifying the health impacts of toxic metal emissions. In contrast to most traditional models it calculates the expectation value of the total damage (summed over the total population and over all time) for typical emission sites, rather than "worst-case" estimates for specific sites or episodes. Such a model is needed for the evaluation of many environmental policy measures, e.g., the optimal level of pollution taxes or emission limits. Based on the methodology that has been developed by USEPA for the assessment of multimedia pathways, the equations and parameters are assembled for the assessment of As, Cd, Cr, Hg, Ni, and Pb, and some typical results are presented (the dose from seafood is not included and for Hg the results are extremely uncertain); the model is freely available on the web. The structure of the model is very simple because, as we show, if the parameters can be approximated by time-independent constants (the case for the USEPA methodology), the total impacts can be calculated with steady-state models even though the environment is never in steady state. The collective ingestion dose is found to be roughly 2 orders of magnitude larger than the collective dose via inhalation. The uncertainties are large, easily an order of magnitude, the main uncertainties arising from the parameter values of the model, in particular the transfer factors. Using linearized dose-response functions, estimates are provided for cancers due to As, Cd, Cr, and Ni as well as IQ loss due to Pb emissions in Europe.  相似文献   

15.
To be efficient, logistics operations in e‐commerce require warehousing and transportation resources to be aligned with sales. Customer orders must be fulfilled with short lead times to ensure high customer satisfaction, and the costly under‐utilization of workers must be avoided. To approach this ideal, forecasting order quantities with high accuracy is essential. Many drivers of online sales, including seasonality, special promotions and public holidays, are well known, and they have been frequently incorporated into forecasting approaches. However, the impact of weather on e‐commerce operations has not been rigorously analyzed. In this study, we integrate weather data into the sales forecasting of the largest European online fashion retailer. We find that sunshine, temperature, and rain have a significant impact on daily sales, particularly in the summer, on weekends, and on days with extreme weather. Using weather forecasts, we have significantly improved sales forecast accuracy. We find that including weather data in the sales forecast model can lead to fewer sales forecast errors, reducing them by, on average, 8.6% to 12.2% and up to 50.6% on summer weekends. In turn, the improvement in sales forecast accuracy has a measurable impact on logistics and warehousing operations. We quantify the value of incorporating weather forecasts in the planning process for the order fulfillment center workforce and show how their incorporation can be leveraged to reduce costs and increase performance. With a perfect information planning scenario, excess costs can be reduced by 11.6% compared with the cost reduction attainable with a baseline model that ignores weather information in workforce planning.  相似文献   

16.
Environmental and public health organizations, including the World Health Organization (WHO) and the U.S. Environmental Protection Agency (USEPA), develop human health reference values (HHRV) that set “safe” levels of exposure to noncarcinogens. Here, we systematically analyze chronic HHRVs from four organizations: USEPA, Health Canada, RIVM (the Netherlands), and the U.S. Agency for Toxic Substances and Disease Registry. This study is an extension of our earlier work and both closely examines the choices made in setting HHRVs and presents a quantitative method for identifying the primary factors influencing HHRV agreement or disagreement.(1) We evaluated 171 organizational comparisons, developing a quantitative method for identifying the factors to which HHRV agreement (that is, when both organizations considering the same data set the identical HHRV values) is most sensitive. To conduct this analysis, a Bayesian belief network was built using expert judgment, including the specific science policy choices analysis made in the context of setting an HHRV. Based on a sensitivity of findings analysis, HHRV agreement is most sensitive to the point of departure value, followed by the total uncertainty factor (UF), critical study, critical effect, animal model, and point of departure approach. This analysis also considered the specific impacts of individual UFs, with the database UF and the subchronic‐to‐chronic UF being identified as primary factors impacting the total UF differences observed across organizations. The sensitivity of findings analysis results were strengthened and confirmed by frequency analyses evaluating which choices most often disagreed when the HHRV and the total UF disagreed.  相似文献   

17.
Climate Change and Human Health: Estimating Avoidable Deaths and Disease   总被引:2,自引:0,他引:2  
Human population health has always been central in the justification for sustainable development but nearly invisible in the United Nations Framework Convention on Climate Change negotiations. Current scientific evidence indicates that climate change will contribute to the global burden of disease through increases in diarrhoeal disease, vector-borne disease, and malnutrition, and the health impacts of extreme weather and climate events. A few studies have estimated future potential health impacts of climate change but often generate little policy-relevant information. Robust estimates of future health impacts rely on robust projections of future disease patterns. The application of a standardized and established methodology has been developed to quantify the impact of climate change in relation to different greenhouse gas emission scenarios. All health risk assessments are necessarily biased toward conservative best-estimates of health effects that are easily measured. Global, regional, and national risk assessments can take no account of irreversibility, or plausible low-probability events with potentially very high burdens on human health. There is no "safe limit" of climate change with respect to health impacts as health systems in some regions do not adequately cope with the current climate variability. Current scientific methods cannot identify global threshold health effects in order for policymakers to regulate a "tolerable" amount of climate change. We argue for the need for more research to reduce the potential impacts of climate change on human health, including the development of improved methods for quantitative risk assessment. The large uncertainty about the future effects of climate change on human population health should be a reason to reduce greenhouse gas emissions, and not a reason for inaction.  相似文献   

18.
《Risk analysis》2018,38(1):163-176
The U.S. Environmental Protection Agency (EPA) uses health risk assessment to help inform its decisions in setting national ambient air quality standards (NAAQS). EPA's standard approach is to make epidemiologically‐based risk estimates based on a single statistical model selected from the scientific literature, called the “core” model. The uncertainty presented for “core” risk estimates reflects only the statistical uncertainty associated with that one model's concentration‐response function parameter estimate(s). However, epidemiologically‐based risk estimates are also subject to “model uncertainty,” which is a lack of knowledge about which of many plausible model specifications and data sets best reflects the true relationship between health and ambient pollutant concentrations. In 2002, a National Academies of Sciences (NAS) committee recommended that model uncertainty be integrated into EPA's standard risk analysis approach. This article discusses how model uncertainty can be taken into account with an integrated uncertainty analysis (IUA) of health risk estimates. It provides an illustrative numerical example based on risk of premature death from respiratory mortality due to long‐term exposures to ambient ozone, which is a health risk considered in the 2015 ozone NAAQS decision. This example demonstrates that use of IUA to quantitatively incorporate key model uncertainties into risk estimates produces a substantially altered understanding of the potential public health gain of a NAAQS policy decision, and that IUA can also produce more helpful insights to guide that decision, such as evidence of decreasing incremental health gains from progressive tightening of a NAAQS.  相似文献   

19.
Expert judgments expressed as subjective probability distributions provide an appropriate means of incorporating technical uncertainty in some quantitative policy studies. Judgments and distributions obtained from several experts allow one to explore the extent to which the conclusions reached in such a study depend on which expert one talks to. For the case of sulfur air pollution from coal-fired power plants, estimates of sulfur mass balance as a function of plume flight time are shown to vary little across the range of opinions of leading atmospheric scientists while estimates of possible health impacts are shown to vary widely across the range of opinions of leading scientists in air pollution health effects.  相似文献   

20.
城市配送网络优化是生鲜连锁经营企业实施新零售的关键环节,本文研究新零售背景下生鲜企业城市配送网络面临的多业态门店选址及末端需求点分配问题。本文系统考虑多业态零售门店选址布局及覆盖范围、冷链设施配置、冷藏品类选择等生鲜新零售特征构建非线性混合整数规划模型,并设计混合拉格朗日松弛算法求解模型,通过与CPLEX对比验证本文算法的有效性。根据典型生鲜连锁企业重庆果琳的实际数据,运用本文模型及算法得到重庆果琳多业态零售门店布局、门店线上订单覆盖范围、门店冷藏最优品类和门店冷链设施配置方案,并探讨需求规模变动、消费者自提意愿、线上订单规模和气温变化等因素对城市配送系统的影响。结果发现相比重庆果琳现有配送网络,优化方案平均成本降低2.52%;生鲜连锁企业损耗成本占总成本超过70%,配置冷链设施总成本仅降低0.32%;需求规模变动对城市配送网络及单位配送成本的影响较小;消费者自提意愿、线上订单规模和气温变化不影响城市配送网络结构且对总成本影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号