首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shared frailty models allow for unobserved heterogeneity or for statistical dependence between observed survival data. The most commonly used estimation procedure in frailty models is the EM algorithm, but this approach yields a discrete estimator of the distribution and consequently does not allow direct estimation of the hazard function. We show how maximum penalized likelihood estimation can be applied to nonparametric estimation of a continuous hazard function in a shared gamma-frailty model with right-censored and left-truncated data. We examine the problem of obtaining variance estimators for regression coefficients, the frailty parameter and baseline hazard functions. Some simulations for the proposed estimation procedure are presented. A prospective cohort (Paquid) with grouped survival data serves to illustrate the method which was used to analyze the relationship between environmental factors and the risk of dementia.  相似文献   

2.
In this paper, a unified maximum marginal likelihood estimation procedure is proposed for the analysis of right censored data using general partially linear varying-coefficient transformation models (GPLVCTM), which are flexible enough to include many survival models as its special cases. Unknown functional coefficients in the models are approximated by cubic B-spline polynomial. We estimate B-spline coefficients and regression parameters by maximizing marginal likelihood function. One advantage of this procedure is that it is free of both baseline and censoring distribution. Through simulation studies and a real data application (VA data from the Veteran's Administration Lung Cancer Study Clinical Trial), we illustrate that the proposed estimation procedure is accurate, stable and practical.  相似文献   

3.
This paper focuses on efficient estimation, optimal rates of convergence and effective algorithms in the partly linear additive hazards regression model with current status data. We use polynomial splines to estimate both cumulative baseline hazard function with monotonicity constraint and nonparametric regression functions with no such constraint. We propose a simultaneous sieve maximum likelihood estimation for regression parameters and nuisance parameters and show that the resultant estimator of regression parameter vector is asymptotically normal and achieves the semiparametric information bound. In addition, we show that rates of convergence for the estimators of nonparametric functions are optimal. We implement the proposed estimation through a backfitting algorithm on generalized linear models. We conduct simulation studies to examine the finite‐sample performance of the proposed estimation method and present an analysis of renal function recovery data for illustration.  相似文献   

4.
We propose a class of general partially linear additive transformation models (GPLATM) with right-censored survival data in this work. The class of models are flexible enough to cover many commonly used parametric and nonparametric survival analysis models as its special cases. Based on the B spline interpolation technique, we estimate the unknown regression parameters and functions by the maximum marginal likelihood estimation method. One important feature of the estimation procedure is that it does not need the baseline and censoring cumulative density distributions. Some numerical studies illustrate that this procedure can work very well for the moderate sample size.  相似文献   

5.
Existing research on mixtures of regression models are limited to directly observed predictors. The estimation of mixtures of regression for measurement error data imposes challenges for statisticians. For linear regression models with measurement error data, the naive ordinary least squares method, which directly substitutes the observed surrogates for the unobserved error-prone variables, yields an inconsistent estimate for the regression coefficients. The same inconsistency also happens to the naive mixtures of regression estimate, which is based on the traditional maximum likelihood estimator and simply ignores the measurement error. To solve this inconsistency, we propose to use the deconvolution method to estimate the mixture likelihood of the observed surrogates. Then our proposed estimate is found by maximizing the estimated mixture likelihood. In addition, a generalized EM algorithm is also developed to find the estimate. The simulation results demonstrate that the proposed estimation procedures work well and perform much better than the naive estimates.  相似文献   

6.
In many financial applications, Poisson mixture regression models are commonly used to analyze heterogeneous count data. When fitting these models, the observed counts are supposed to come from two or more subpopulations and parameter estimation is typically performed by means of maximum likelihood via the Expectation–Maximization algorithm. In this study, we discuss briefly the procedure for fitting Poisson mixture regression models by means of maximum likelihood, the model selection and goodness-of-fit tests. These models are applied to a real data set for credit-scoring purposes. We aim to reveal the impact of demographic and financial variables in creating different groups of clients and to predict the group to which each client belongs, as well as his expected number of defaulted payments. The model's conclusions are very interesting, revealing that the population consists of three groups, contrasting with the traditional good versus bad categorization approach of the credit-scoring systems.  相似文献   

7.
Classical methods based on Gaussian likelihood or least-squares cannot identify non-invertible moving average processes, while recent non-Gaussian results are based on full likelihood consideration. Since the error distribution is rarely known a quasi-likelihood approach is desirable, but its consistency properties are yet unknown. In this paper we study the quasi-likelihood associated with the Laplacian model, a convenient non-Gaussian model that yields a modified L 1 procedure. We show that consistency holds for all standard heavy tailed errors, but not for light tailed errors, showing that a quasi-likelihood procedure cannot be applied blindly to estimate non-invertible models. This is an interesting contrast to the standard results of the quasi-likelihood in regression models, where consistency usually holds much more generally. Similar results hold for estimation of non-causal non-invertible ARMA processes. Various simulation studies are presented to validate the theory and to show the effect of the error distribution, and an analysis of the US unemployment series is given as an illustration.  相似文献   

8.
Summary.  We develop a new class of time continuous autoregressive fractionally integrated moving average (CARFIMA) models which are useful for modelling regularly spaced and irregu-larly spaced discrete time long memory data. We derive the autocovariance function of a stationary CARFIMA model and study maximum likelihood estimation of a regression model with CARFIMA errors, based on discrete time data and via the innovations algorithm. It is shown that the maximum likelihood estimator is asymptotically normal, and its finite sample properties are studied through simulation. The efficacy of the approach proposed is demonstrated with a data set from an environmental study.  相似文献   

9.
In this paper, we study the estimation and inference for a class of semiparametric mixtures of partially linear models. We prove that the proposed models are identifiable under mild conditions, and then give a PL–EM algorithm estimation procedure based on profile likelihood. The asymptotic properties for the resulting estimators and the ascent property of the PL–EM algorithm are investigated. Furthermore, we develop a test statistic for testing whether the non parametric component has a linear structure. Monte Carlo simulations and a real data application highlight the interest of the proposed procedures.  相似文献   

10.
Abstract. We propose a spline‐based semiparametric maximum likelihood approach to analysing the Cox model with interval‐censored data. With this approach, the baseline cumulative hazard function is approximated by a monotone B‐spline function. We extend the generalized Rosen algorithm to compute the maximum likelihood estimate. We show that the estimator of the regression parameter is asymptotically normal and semiparametrically efficient, although the estimator of the baseline cumulative hazard function converges at a rate slower than root‐n. We also develop an easy‐to‐implement method for consistently estimating the standard error of the estimated regression parameter, which facilitates the proposed inference procedure for the Cox model with interval‐censored data. The proposed method is evaluated by simulation studies regarding its finite sample performance and is illustrated using data from a breast cosmesis study.  相似文献   

11.
Spatial data and non parametric methods arise frequently in studies of different areas and it is a common practice to analyze such data with semi-parametric spatial autoregressive (SPSAR) models. We propose the estimations of SPSAR models based on maximum likelihood estimation (MLE) and kernel estimation. The estimation of spatial regression coefficient ρ was done by optimizing the concentrated log-likelihood function with respect to ρ. Furthermore, under appropriate conditions, we derive the limiting distributions of our estimators for both the parametric and non parametric components in the model.  相似文献   

12.
We propose a two-stage algorithm for computing maximum likelihood estimates for a class of spatial models. The algorithm combines Markov chain Monte Carlo methods such as the Metropolis–Hastings–Green algorithm and the Gibbs sampler, and stochastic approximation methods such as the off-line average and adaptive search direction. A new criterion is built into the algorithm so stopping is automatic once the desired precision has been set. Simulation studies and applications to some real data sets have been conducted with three spatial models. We compared the algorithm proposed with a direct application of the classical Robbins–Monro algorithm using Wiebe's wheat data and found that our procedure is at least 15 times faster.  相似文献   

13.
Semiparametric models: a generalized self-consistency approach   总被引:1,自引:0,他引:1  
Summary. In semiparametric models, the dimension d of the maximum likelihood problem is potentially unlimited. Conventional estimation methods generally behave like O ( d 3). A new O ( d ) estimation procedure is proposed for a large class of semiparametric models. Potentially unlimited dimension is handled in a numerically efficient way through a Nelson–Aalen-like estimator. Discussion of the new method is put in the context of recently developed minorization–maximization algorithms based on surrogate objective functions. The procedure for semiparametric models is used to demonstrate three methods to construct a surrogate objective function: using the difference of two concave functions, the EM way and the new quasi-EM (QEM) approach. The QEM approach is based on a generalization of the EM-like construction of the surrogate objective function so it does not depend on the missing data representation of the model. Like the EM algorithm, the QEM method has a dual interpretation, a result of merging the idea of surrogate maximization with the idea of imputation and self-consistency. The new approach is compared with other possible approaches by using simulations and analysis of real data. The proportional odds model is used as an example throughout the paper.  相似文献   

14.
Binary dynamic fixed and mixed logit models are extensively studied in the literature. These models are developed to examine the effects of certain fixed covariates through a parametric regression function as a part of the models. However, there are situations where one may like to consider more covariates in the model but their direct effect is not of interest. In this paper we propose a generalization of the existing binary dynamic logit (BDL) models to the semi-parametric longitudinal setup to address this issue of additional covariates. The regression function involved in such a semi-parametric BDL model contains (i) a parametric linear regression function in some primary covariates, and (ii) a non-parametric function in certain secondary covariates. We use a simple semi-parametric conditional quasi-likelihood approach for consistent estimation of the non-parametric function, and a semi-parametric likelihood approach for the joint estimation of the main regression and dynamic dependence parameters of the model. The finite sample performance of the estimation approaches is examined through a simulation study. The asymptotic properties of the estimators are also discussed. The proposed model and the estimation approaches are illustrated by reanalysing a longitudinal infectious disease data.  相似文献   

15.
A maximum likelihood estimation procedure is presented for the frailty model. The procedure is based on a stochastic Expectation Maximization algorithm which converges quickly to the maximum likelihood estimate. The usual expectation step is replaced by a stochastic approximation of the complete log-likelihood using simulated values of unobserved frailties whereas the maximization step follows the same lines as those of the Expectation Maximization algorithm. The procedure allows to obtain at the same time estimations of the marginal likelihood and of the observed Fisher information matrix. Moreover, this stochastic Expectation Maximization algorithm requires less computation time. A wide variety of multivariate frailty models without any assumption on the covariance structure can be studied. To illustrate this procedure, a Gaussian frailty model with two frailty terms is introduced. The numerical results based on simulated data and on real bladder cancer data are more accurate than those obtained by using the Expectation Maximization Laplace algorithm and the Monte-Carlo Expectation Maximization one. Finally, since frailty models are used in many fields such as ecology, biology, economy, …, the proposed algorithm has a wide spectrum of applications.  相似文献   

16.
Data sets with excess zeroes are frequently analyzed in many disciplines. A common framework used to analyze such data is the zero-inflated (ZI) regression model. It mixes a degenerate distribution with point mass at zero with a non-degenerate distribution. The estimates from ZI models quantify the effects of covariates on the means of latent random variables, which are often not the quantities of primary interest. Recently, marginal zero-inflated Poisson (MZIP; Long et al. [A marginalized zero-inflated Poisson regression model with overall exposure effects. Stat. Med. 33 (2014), pp. 5151–5165]) and negative binomial (MZINB; Preisser et al., 2016) models have been introduced that model the mean response directly. These models yield covariate effects that have simple interpretations that are, for many applications, more appealing than those available from ZI regression. This paper outlines a general framework for marginal zero-inflated models where the latent distribution is a member of the exponential dispersion family, focusing on common distributions for count data. In particular, our discussion includes the marginal zero-inflated binomial (MZIB) model, which has not been discussed previously. The details of maximum likelihood estimation via the EM algorithm are presented and the properties of the estimators as well as Wald and likelihood ratio-based inference are examined via simulation. Two examples presented illustrate the advantages of MZIP, MZINB, and MZIB models for practical data analysis.  相似文献   

17.
In this article, we present EM algorithms for performing maximum likelihood estimation for three multivariate skew-normal regression models of considerable practical interest. We also consider the restricted estimation of the parameters of certain important special cases of two models. The methodology developed is applied in the analysis of longitudinal data on dental plaque and cholesterol levels.  相似文献   

18.
Linear mixed models are widely used when multiple correlated measurements are made on each unit of interest. In many applications, the units may form several distinct clusters, and such heterogeneity can be more appropriately modelled by a finite mixture linear mixed model. The classical estimation approach, in which both the random effects and the error parts are assumed to follow normal distribution, is sensitive to outliers, and failure to accommodate outliers may greatly jeopardize the model estimation and inference. We propose a new mixture linear mixed model using multivariate t distribution. For each mixture component, we assume the response and the random effects jointly follow a multivariate t distribution, to conveniently robustify the estimation procedure. An efficient expectation conditional maximization algorithm is developed for conducting maximum likelihood estimation. The degrees of freedom parameters of the t distributions are chosen data adaptively, for achieving flexible trade-off between estimation robustness and efficiency. Simulation studies and an application on analysing lung growth longitudinal data showcase the efficacy of the proposed approach.  相似文献   

19.
In this paper, we consider a new mixture of varying coefficient models, in which each mixture component follows a varying coefficient model and the mixing proportions and dispersion parameters are also allowed to be unknown smooth functions. We systematically study the identifiability, estimation and inference for the new mixture model. The proposed new mixture model is rather general, encompassing many mixture models as its special cases such as mixtures of linear regression models, mixtures of generalized linear models, mixtures of partially linear models and mixtures of generalized additive models, some of which are new mixture models by themselves and have not been investigated before. The new mixture of varying coefficient model is shown to be identifiable under mild conditions. We develop a local likelihood procedure and a modified expectation–maximization algorithm for the estimation of the unknown non‐parametric functions. Asymptotic normality is established for the proposed estimator. A generalized likelihood ratio test is further developed for testing whether some of the unknown functions are constants. We derive the asymptotic distribution of the proposed generalized likelihood ratio test statistics and prove that the Wilks phenomenon holds. The proposed methodology is illustrated by Monte Carlo simulations and an analysis of a CO2‐GDP data set.  相似文献   

20.
We consider statistical inference for longitudinal partially linear models when the response variable is sometimes missing with missingness probability depending on the covariate that is measured with error. The block empirical likelihood procedure is used to estimate the regression coefficients and residual adjusted block empirical likelihood is employed for the baseline function. This leads us to prove a nonparametric version of Wilk's theorem. Compared with methods based on normal approximations, our proposed method does not require a consistent estimators for the asymptotic variance and bias. An application to a longitudinal study is used to illustrate the procedure developed here. A simulation study is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号