首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bayesian predictive power, the expectation of the power function with respect to a prior distribution for the true underlying effect size, is routinely used in drug development to quantify the probability of success of a clinical trial. Choosing the prior is crucial for the properties and interpretability of Bayesian predictive power. We review recommendations on the choice of prior for Bayesian predictive power and explore its features as a function of the prior. The density of power values induced by a given prior is derived analytically and its shape characterized. We find that for a typical clinical trial scenario, this density has a u‐shape very similar, but not equal, to a β‐distribution. Alternative priors are discussed, and practical recommendations to assess the sensitivity of Bayesian predictive power to its input parameters are provided. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Kontkanen  P.  Myllymäki  P.  Silander  T.  Tirri  H.  Grünwald  P. 《Statistics and Computing》2000,10(1):39-54
In this paper we are interested in discrete prediction problems for a decision-theoretic setting, where the task is to compute the predictive distribution for a finite set of possible alternatives. This question is first addressed in a general Bayesian framework, where we consider a set of probability distributions defined by some parametric model class. Given a prior distribution on the model parameters and a set of sample data, one possible approach for determining a predictive distribution is to fix the parameters to the instantiation with the maximum a posteriori probability. A more accurate predictive distribution can be obtained by computing the evidence (marginal likelihood), i.e., the integral over all the individual parameter instantiations. As an alternative to these two approaches, we demonstrate how to use Rissanen's new definition of stochastic complexity for determining predictive distributions, and show how the evidence predictive distribution with Jeffrey's prior approaches the new stochastic complexity predictive distribution in the limit with increasing amount of sample data. To compare the alternative approaches in practice, each of the predictive distributions discussed is instantiated in the Bayesian network model family case. In particular, to determine Jeffrey's prior for this model family, we show how to compute the (expected) Fisher information matrix for a fixed but arbitrary Bayesian network structure. In the empirical part of the paper the predictive distributions are compared by using the simple tree-structured Naive Bayes model, which is used in the experiments for computational reasons. The experimentation with several public domain classification datasets suggest that the evidence approach produces the most accurate predictions in the log-score sense. The evidence-based methods are also quite robust in the sense that they predict surprisingly well even when only a small fraction of the full training set is used.  相似文献   

3.
This investigation considers a general linear model which changes parameters exactly once during the observation period. Assuming all the parameters are unknown and a proper prior distribution, the Bayesian predictive distribution of the future observations is derived.

It is shown that the predictive distribution is a mixture of multivariate t distributions and that the mixing distribution is the marginal posterior mass function of the change point parameter.  相似文献   

4.
A novel class of hierarchical nonparametric Bayesian survival regression models for time-to-event data with uninformative right censoring is introduced. The survival curve is modeled as a random function whose prior distribution is defined using the beta-Stacy (BS) process. The prior mean of each survival probability and its prior variance are linked to a standard parametric survival regression model. This nonparametric survival regression can thus be anchored to any reference parametric form, such as a proportional hazards or an accelerated failure time model, allowing substantial departures of the predictive survival probabilities when the reference model is not supported by the data. Also, under this formulation the predictive survival probabilities will be close to the empirical survival distribution near the mode of the reference model and they will be shrunken towards its probability density in the tails of the empirical distribution.  相似文献   

5.
Construction methods for prior densities are investigated from a predictive viewpoint. Predictive densities for future observables are constructed by using observed data. The simultaneous distribution of future observables and observed data is assumed to belong to a parametric submodel of a multinomial model. Future observables and data are possibly dependent. The discrepancy of a predictive density to the true conditional density of future observables given observed data is evaluated by the Kullback-Leibler divergence. It is proved that limits of Bayesian predictive densities form an essentially complete class. Latent information priors are defined as priors maximizing the conditional mutual information between the parameter and the future observables given the observed data. Minimax predictive densities are constructed as limits of Bayesian predictive densities based on prior sequences converging to the latent information priors.  相似文献   

6.
Consistency of Bernstein polynomial posteriors   总被引:1,自引:0,他引:1  
A Bernstein prior is a probability measure on the space of all the distribution functions on [0, 1]. Under very general assumptions, it selects absolutely continuous distribution functions, whose densities are mixtures of known beta densities. The Bernstein prior is of interest in Bayesian nonparametric inference with continuous data. We study the consistency of the posterior from a Bernstein prior. We first show that, under mild assumptions, the posterior is weakly consistent for any distribution function P 0 on [0, 1] with continuous and bounded Lebesgue density. With slightly stronger assumptions on the prior, the posterior is also Hellinger consistent. This implies that the predictive density from a Bernstein prior, which is a Bayesian density estimate, converges in the Hellinger sense to the true density (assuming that it is continuous and bounded). We also study a sieve maximum likelihood version of the density estimator and show that it is also Hellinger consistent under weak assumptions. When the order of the Bernstein polynomial, i.e. the number of components in the beta distribution mixture, is truncated, we show that under mild restrictions the posterior concentrates on the set of pseudotrue densities. Finally, we study the behaviour of the predictive density numerically and we also study a hybrid Bayes–maximum likelihood density estimator.  相似文献   

7.
This work is concerned with the Bayesian prediction problem of the number of components which will fail in a future time interval, when the failure times are Weibull distributed. Both the 1-sample and the 2-sample prediction problems are dealed with, and some choices of the prior densities on the distribution parameters are discussed which are relatively easy to work with and allow different degrees of knowledge on the failure mechanism to be incorporated in the predictive procedure. Useful relations between the predictive distribution on the number of future failures and the predictive distribution on the future failure times are derived. Numerical examples are also given.  相似文献   

8.
Typically, in the brief discussion of Bayesian inferential methods presented at the beginning of calculus-based undergraduate or graduate mathematical statistics courses, little attention is paid to the process of choosing the parameter value(s) for the prior distribution. Even less attention is paid to the impact of these choices on the predictive distribution of the data. Reasons for this include that the posterior can be found by ignoring the predictive distribution thereby streamlining the derivation of the posterior and/or that computer software can be used to find the posterior distribution. In this paper, the binomial, negative-binomial and Poisson distributions along with their conjugate beta and gamma priors are utilized to obtain the resulting predictive distributions. It is then demonstrated that specific choices of the parameters of the priors can lead to predictive distributions with properties that might be surprising to a non-expert user of Bayesian methods.  相似文献   

9.
Abstract

Predictive probability estimation for a Poisson distribution is addressed when the parameter space is restricted. The Bayesian predictive probability against the prior on the restricted space is compared with the non-restricted Bayes predictive probability. It is shown that the former predictive probability dominates the latter under some conditions when the predictive probabilities are evaluated by the risk function relative to the Kullback-Leibler divergence. This result is proved by first showing the corresponding dominance result for estimating the restricted parameter and then translating it into the framework of predictive probability estimation.  相似文献   

10.
Two results on the unimodality of the Dirichlet-multinomial distribution are proved, and a further result is alos proved on the identifiability of mixtures of multinomial distributions. These properties are used in developing a method for eliciting a Dirchlet prior distribution. The elicitation method is based on the mode, and region around the mode, of the Dirichlet-multinomial predictive distribution.  相似文献   

11.
summary In this paper we derive the predictive density function of a future observation under the assumption of Edgeworth-type non-normal prior distribution for the unknown mean of a normal population. Fixed size single sample and sequential sampling inspection plans, in a decisive prediction framework, are examined for their sensitivity to departures from normality of the prior distribution. Numerical illustrations indicate that the decision to market the remaining items of a given lot for a fixed size plan may be sensitive to the presence of skewness or kurtosis in the prior distribution. However, Bayes'decision based on the sequential plan may not change though expected gains may change with variation in the non-normality of the prior distribution.  相似文献   

12.
The Simon's two‐stage design is the most commonly applied among multi‐stage designs in phase IIA clinical trials. It combines the sample sizes at the two stages in order to minimize either the expected or the maximum sample size. When the uncertainty about pre‐trial beliefs on the expected or desired response rate is high, a Bayesian alternative should be considered since it allows to deal with the entire distribution of the parameter of interest in a more natural way. In this setting, a crucial issue is how to construct a distribution from the available summaries to use as a clinical prior in a Bayesian design. In this work, we explore the Bayesian counterparts of the Simon's two‐stage design based on the predictive version of the single threshold design. This design requires specifying two prior distributions: the analysis prior, which is used to compute the posterior probabilities, and the design prior, which is employed to obtain the prior predictive distribution. While the usual approach is to build beta priors for carrying out a conjugate analysis, we derived both the analysis and the design distributions through linear combinations of B‐splines. The motivating example is the planning of the phase IIA two‐stage trial on anti‐HER2 DNA vaccine in breast cancer, where initial beliefs formed from elicited experts' opinions and historical data showed a high level of uncertainty. In a sample size determination problem, the impact of different priors is evaluated.  相似文献   

13.
Linear regression models with coefficients across individual units regarded as random samples from some population are studied in this article from a Bayesian viewpoint. A prior distribution of the secondary parameters is derived following the Jeffreys rule. Posterior distribution of the primary and secondary parameters, and the predictive distribution of the future value are then examined. Computations of the parameter estimates are found to be rather straightforward. Data from a performance test on pigs is analysed and discussed. We also discuss the difficulties involved in using a Lindley and Smith (1972) prior in this problem.  相似文献   

14.
Random effects model can account for the lack of fitting a regression model and increase precision of estimating area‐level means. However, in case that the synthetic mean provides accurate estimates, the prior distribution may inflate an estimation error. Thus, it is desirable to consider the uncertain prior distribution, which is expressed as the mixture of a one‐point distribution and a proper prior distribution. In this paper, we develop an empirical Bayes approach for estimating area‐level means, using the uncertain prior distribution in the context of a natural exponential family, which we call the empirical uncertain Bayes (EUB) method. The regression model considered in this paper includes the Poisson‐gamma and the binomial‐beta, and the normal‐normal (Fay–Herriot) model, which are typically used in small area estimation. We obtain the estimators of hyperparameters based on the marginal likelihood by using a well‐known expectation‐maximization algorithm and propose the EUB estimators of area means. For risk evaluation of the EUB estimator, we derive a second‐order unbiased estimator of a conditional mean squared error by using some techniques of numerical calculation. Through simulation studies and real data applications, we evaluate a performance of the EUB estimator and compare it with the usual empirical Bayes estimator.  相似文献   

15.
Extreme quantile estimation plays an important role in risk management and environmental statistics among other applications. A popular method is the peaks-over-threshold (POT) model that approximate the distribution of excesses over a high threshold through generalized Pareto distribution (GPD). Motivated by a practical financial risk management problem, we look for an appropriate prior choice for Bayesian estimation of the GPD parameters that results in better quantile estimation. Specifically, we propose a noninformative matching prior for the parameters of a GPD so that a specific quantile of the Bayesian predictive distribution matches the true quantile in the sense of Datta et al. (2000).  相似文献   

16.
This paper presents a Bayesian non-parametric approach to survival analysis based on arbitrarily right censored data. The analysis is based on posterior predictive probabilities using a Polya tree prior distribution on the space of probability measures on [0, ∞). In particular we show that the estimate generalizes the classical Kaplanndash;Meier non-parametric estimator, which is obtained in the limiting case as the weight of prior information tends to zero.  相似文献   

17.
The prediction problem is considered for the multivariate regression model with an elliptically contoured error distribution. We show that the predictive distribution under elliptical errors assumption is the same as that obtained under normally distributed error in both the Bayesian approach using an im-proper prior and the classical approach. This gives inference robustness with respect to departures from the reference case of independent sampling from the normal distribution.  相似文献   

18.
In this article, posterior distribution, posterior moments, and predictive distribution for the modified power series distributions deformed at any of a support point under linex and generalized entropy loss function are derived. It is assumed that the prior information can be summarized by a uniform, Beta, two-sided power, Gamma, or generalized Pareto distributions. The obtained results are demonstrated on the generalized Poisson and the generalized negative binomial distribution deformed at a given point.  相似文献   

19.
Both knowledge-based systems and statistical models are typically concerned with making predictions about future observables. Here we focus on assessment of predictive performance and provide two techniques for improving the predictive performance of Bayesian graphical models. First, we present Bayesian model averaging, a technique for accounting for model uncertainty.

Second, we describe a technique for eliciting a prior distribution for competing models from domain experts. We explore the predictive performance of both techniques in the context of a urological diagnostic problem.  相似文献   

20.
In this paper we consider a Bayesian predictive approach to sample size determination in equivalence trials. Equivalence experiments are conducted to show that the unknown difference between two parameters is small. For instance, in clinical practice this kind of experiment aims to determine whether the effects of two medical interventions are therapeutically similar. We declare an experiment successful if an interval estimate of the effects‐difference is included in a set of values of the parameter of interest indicating a negligible difference between treatment effects (equivalence interval). We derive two alternative criteria for the selection of the optimal sample size, one based on the predictive expectation of the interval limits and the other based on the predictive probability that these limits fall in the equivalence interval. Moreover, for both criteria we derive a robust version with respect to the choice of the prior distribution. Numerical results are provided and an application is illustrated when the normal model with conjugate prior distributions is assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号