首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Distribution-free (nonparametric) control charts can be useful to the quality practitioner when the underlying distribution is not known. A Phase II nonparametric cumulative sum (CUSUM) chart based on the exceedance statistics, called the exceedance CUSUM chart, is proposed here for detecting a shift in the unknown location parameter of a continuous distribution. The exceedance statistics can be more efficient than rank-based methods when the underlying distribution is heavy-tailed and/or right-skewed, which may be the case in some applications, particularly with certain lifetime data. Moreover, exceedance statistics can save testing time and resources as they can be applied as soon as a certain order statistic of the reference sample is available. Guidelines and recommendations are provided for the chart's design parameters along with an illustrative example. The in- and out-of-control performances of the chart are studied through extensive simulations on the basis of the average run-length (ARL), the standard deviation of run-length (SDRL), the median run-length (MDRL), and some percentiles of run-length. Further, a comparison with a number of existing control charts, including the parametric CUSUM chart and a recent nonparametric CUSUM chart based on the Wilcoxon rank-sum statistic, called the rank-sum CUSUM chart, is made. It is seen that the exceedance CUSUM chart performs well in many cases and thus can be a useful alternative chart in practice. A summary and some concluding remarks are given.  相似文献   

2.
The existing statistical process control procedures typically rely on the fundamental assumption of a parametric distribution of the quality characteristic. However, when there is a lack of knowledge about the underlying distribution (as full knowledge is not available in practice), the performance of these parametric charts is very likely to be heavily degraded. Motivated by this problem, a one-sided nonparametric monitoring procedure using the single sample sign statistic is proposed for detecting a shift in the location parameter of a continuous distribution. An economic model of the control chart is developed to optimize the sample size, sampling interval, and control limits. Three data-dependent estimation approaches for the unknown parameter are evaluated and discussed. Simulation results exhibit that our proposed procedure generally performs well under a great variety of continuous distributions and hence it is recommended as an alternative scheme especially when the knowledge of the underlying distribution is imperfect. Furthermore, beneficial recommendations of estimation approach selection are provided for practical implementation of the control chart.  相似文献   

3.
The Weibull distribution is one of the most popular distributions for lifetime modeling. However, there has not been much research on control charts for a Weibull distribution. Shewhart control is known to be inefficient to detect a small shift in the process, while exponentially weighted moving average (EWMA) and cumulative sum control chart (CUSUM) charts have the ability to detect small changes in the process. To enhance the performance of a control chart for a Weibull distribution, we introduce a new control chart based on hybrid EWMA and CUSUM statistic, called the HEWMA-CUSUM chart. The performance of the proposed chart is compared with the existing chart in terms of the average run length (ARL). The proposed chart is found to be more sensitive than the existing chart in ARL. A simulation study is provided for illustration purposes. A real data is also applied to the proposed chart for practical use.  相似文献   

4.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart.  相似文献   

5.
Nonparametric control chart is useful when the underlying distribution is unknown, or is not likely to be normal. In this article, we provide a sequential rank-based nonparametric adaptive EWMA (NAE) control chart for detecting the persistent shift in the location parameter. This NAE chart is a self-starting scheme and thus can be used to monitor processes at the start-up stages rather than waiting for the accumulation of sufficiently large calibration samples. Moreover, we do not require any prior knowledge of the underlying distribution, and to prespecify any tuning parameter either. A Markov chain model is suggested to calibrate the run-length distribution of NAE, which is shown to have approximate tail probability as a geometric distribution. A simulation study demonstrates that the proposed control chart not only performs robustly for different distributions, but also is efficient in detecting various magnitude of shifts. A real-data example from manufacturing shows that it performs quite well in practical applications.  相似文献   

6.
This study examines the statistical process control chart used to detect a parameter shift with Poisson integer-valued GARCH (INGARCH) models and zero-inflated Poisson INGARCH models. INGARCH models have a conditional mean structure similar to GARCH models and are well known to be appropriate to analyzing count data that feature overdispersion. Special attention is paid in this study to conditional and general likelihood ratio-based (CLR and GLR) CUSUM charts and the score function-based CUSUM (SFCUSUM) chart. The performance of each of the proposed methods is evaluated through a simulation study, by calculating their average run length. Our findings show that the proposed methods perform adequately, and that the CLR chart outperforms the GLR chart when there is an increased shift of parameters. Moreover, the use of the SFCUSUM chart in particular is found to lead to a lower false alarm rate than the use of the CLR chart.  相似文献   

7.
In this article, we will present a control chart using normal transformation and generally weighted moving average (GWMA) statistic when the quality characteristic follows the exponential distribution. We will develop the necessary measures to monitor the mean of the process using GWMA statistic and analyze the performance using simulation. The average run lengths for monitoring process average are given for various process shifts. The performance of the proposed chart is examined and compared with the existing control chart. The proposed control chart is effective for the monitoring of small shifts in the mean process. The application of the proposed chart is illustrated with the help of simulated data.  相似文献   

8.
In this paper, a control chart has been developed for the Conway–Maxwell Poisson (COM-Poisson) distribution using the modified exponentially weighted moving average statistic. The proposed chart provides an efficient detection of smaller changes in the location parameter of the COM-Poisson distribution. The performance of the proposed control chart has been evaluated by the average and the standard deviation of the run length distribution for various parameters. Better detecting ability has also been compared with the existing control chart using EWMA statistic. Using simulation, we also showed the detecting ability over the traditional EWMA chart.  相似文献   

9.
This article presents a synthetic control chart for detection of shifts in the process median. The synthetic chart is a combination of sign chart and conforming run-length chart. The performance evaluation of the proposed chart indicates that the synthetic chart has a higher power of detecting shifts in process median than the Shewhart charts based on sign statistic as well as the classical Shewhart X-bar chart for various symmetric distributions. The improvement is significant for shifts of moderate to large shifts in the median. The robustness studies of the proposed synthetic control chart against outliers indicate that the proposed synthetic control chart is robust against contamination by outliers.  相似文献   

10.
A control chart is an ever-popular tool for monitoring the production process. The early detection of a process shift, if any, is the desire of the quality control personnel. In this article, an effective alternative control charting procedure has been developed for the monitoring of exponentially distributed quality characteristic using the double moving average combined with EWMA statistic. The performance of the proposed control chart is examined for different combinations of the shift constant, the EWMA smoothing parameter, the moving average span, and the target in-control average run lengths. It has been observed that the proposed control chart is more efficient in the detection of process shifts as compared to control chart suggested by Khoo and Wang for the same purpose. The proposed control chart is illustrated for practical usage with the help of a synthetic and a real dataset.  相似文献   

11.
The shape features of run chart patterns of the most recent m observations arising from stable and unstable processes are different. Using this fact, a new monitoring statistic is defined whose value for given m depends on the pattern parameters but not on the process parameters. A control chart for this statistic for given m, therefore, will be globally applicable to normal processes. The simulation study reveals that the proposed statistic approximately follows normal distribution. The performances of the globally applicable control chart in terms of average run lengths (ARLs) are evaluated and compared with the X chart. Both in-control ARL and out-of-control ARLs with respect to different abnormal process conditions are found to be larger than the X chart. However, the proposed concept is promising because it can eliminate the burden of designing separate control charts for different quality characteristics or processes in a manufacturing set-up.  相似文献   

12.
In this paper, an attribute control chart under repetitive group sampling is designed for monitoring the production process where the lifetime of the product is considered as quality of the product. We assume that the lifetime follows the Pareto distribution of second kind with known shape parameter. The performance of the proposed chart is evaluated by average run length. The control limits coefficients as well as the repetitive group sampling parameter such as sample size are determined such that the in-control average run length is as close as to the specified average run length. Out-of-control average run length is also reported for different shift constants with corresponding optimal parameters. In addition, performance of proposed control chart is compared with the performance of existing chart. An economical designing of proposed control chart is also discussed.  相似文献   

13.
14.
The adaptive memory-type control charts, including the adaptive exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts, have gained considerable attention because of their excellent speed in providing overall good detection over a range of mean shift sizes. In this paper, we propose a new adaptive EWMA (AEWMA) chart using the auxiliary information for efficiently monitoring the infrequent changes in the process mean. The idea is to first estimate the unknown process mean shift using an auxiliary information based mean estimator, and then adaptively update the smoothing constant of the EWMA chart. Using extensive Monte Carlo simulations, the run length profiles of the AEWMA chart are computed and explored. The AEWMA chart is compared with the existing control charts, including the classical EWMA, CUSUM, synthetic EWMA and synthetic CUSUM charts, in terms of the run length characteristics. It turns out that the AEWMA chart performs uniformly better than these control charts when detecting a range of mean shift sizes. An illustrative example is also presented to demonstrate the working and implementation of the proposed and existing control charts.  相似文献   

15.
A new control chart is proposed by using the belief statistic for the exponential distribution. The structure of the proposed control chart is given to measure the average run length for the shifted process. The comparison of the proposed chart is given with the existing charts in terms of the average run lengths, which shows the outperformance of the proposed chart. The performance of the proposed control chart is also discussed with the help of simulated data.  相似文献   

16.
ABSTRACT

This article develops an exponentially weighted moving average (EWMA) control chart using an auxiliary variable and repetitive sampling for efficient detection of small to moderate shifts in location. A EWMA statistic of a product estimator of the average (which utilities the information of auxiliary variables as well as repetitive sampling) is plotted on the proposed chart. The control chart coefficients of the proposed EWMA chart are determined for two strategic limits known as outer and inner control limits for the target in-control average run length. The performance of the proposed EWMA chart is studied using average run length when a shift occurs in the process average. The efficiency of the developed chart is compared with the competitive existing control charts. The results of the study revealed that proposed EWMA chart is more efficient than others to detect small changes in process mean.  相似文献   

17.
The conventional Shewhart-type control chart is developed essentially on the central limit theorem. Thus, the Shewhart-type control chart performs particularly well when the observed process data come from a near-normal distribution. On the other hand, when the underlying distribution is unknown or non-normal, the sampling distribution of a parameter estimator may not be available theoretically. In this case, the Shewhart-type charts are not available. Thus, in this paper, we propose a parametric bootstrap control chart for monitoring percentiles when process measurements have an inverse Gaussian distribution. Through extensive Monte Carlo simulations, we investigate the behaviour and performance of the proposed bootstrap percentile charts. The average run lengths of the proposed percentage charts are investigated.  相似文献   

18.
We consider a novel univariate non parametric cumulative sum (CUSUM) control chart for detecting the small shifts in the mean of a process, where the nominal value of the mean is unknown but some historical data are available. This chart is established based on the Mann–Whitney statistic as well as the change-point model, where any assumption for the underlying distribution of the process is not required. The performance comparisons based on simulations show that the proposed control chart is slightly more effective than some other related non parametric control charts.  相似文献   

19.
In this article, we provide a sequential rank-based dual nonparametric CUSUM (DNC) control chart for detecting arbitrary magnitude of shifts in the location parameter. It is a self-starting scheme and thus can be used to monitor processes at the start-up stages. Moreover, we do not require any prior knowledge of the underlying distribution. A simulation study demonstrates that the proposed control chart not only performs robustly for different distributions, but also is efficient in detecting various magnitudes of shifts. An illustrative example is given to introduce the implementation of our proposed DNC control chart. It is easy to construct and fast to compute.  相似文献   

20.
The standard multivariate exponentially weighted moving average (MEWMA) control chart with a constant smoothing parameter or diagonal matrix is based on the assumption that the samples obey standard normal distribution. With improvements in manufacturing quality and product complexity, there is always correlativity among quality characteristics, and samples will not always obey standard normal distribution. Considering the correlativity among quality characteristics, a new modified general MEWMA (GEWMA) control chart is proposed, and its performance is analyzed. Based on the Particle Swarm Optimization (PSO) algorithm, a smoothing matrix optimized under certain conditions is selected and applied to a sample analysis. As a result of the parameter combination chosen by PSO, the statistic function of the GEWMA control chart is better than that of the full matrix MEWMA (FEWMA) control chart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号