首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper discusses a goodness-of-fit test that uses the integral of the squared modulus of the difference between the empirical characteristic function of the sample data and the characteristic function of the hypothesized distribution. Monte Carlo procedures are employed to obtain the empirical percentage points for testing the fit of normal, logistic and exponential distributions with unknown location and scale parameters. Results of Monte Carlo power comparisons with other well-developed goodness-of-fit tests are summarized. Tne proposed test is shown to have superior power for testing the fit of the logistic distibotion (for moderate sample sizes) against a wide range of alternative distributions.  相似文献   

2.
This paper examines the goodness-of-fit (GOF) test for a generalized asymmetric Student-t distribution (ASTD) and asymmetric exponential power distribution (AEPD). These distributions are known to include a broad class of distribution families and are quite suitable to modelling the innovations of financial time series. Despite their popularity, to our knowledge, no studies in the literature have so far investigated their affinity and differences in implementation. To fill this gap, we examine the empirical power behaviour of entropy-based GOF tests for hypotheses wherein the ASTD and AEPD play the role of null and alternative distributions. Our findings through a simulation study and real data analysis indicate that the two distributions are generally hard to distinguish and that the ASTD family accommodates AEPDs to a greater degree than the other way around for larger samples.  相似文献   

3.
Vasicek's entropy test for normality is based on sample entropy and a parametric entropy estimator. These estimators are known to have bias in small samples. The use of Vasicek's test could affect the capability of detecting non-normality to some extent. This paper presents an improved entropy test, which uses bias-corrected entropy estimators. A Monte Carlo simulation study is performed to compare the power of the proposed test under several alternative distributions with some other tests. The results report that as anticipated, the improved entropy test has consistently higher power than the ordinary entropy test in nearly all sample sizes and alternatives considered, and compares favorably with other tests.  相似文献   

4.
To model growth curves in survival analysis and biological studies the logistic distribution has been widely used. In this article, we propose a goodness-of-fit test for the logistic distribution based on an estimate of the Gini index. The exact distribution of the proposed test statistic and also its asymptotic distribution are presented. In order to compute the proposed test statistic, parameters of the logistic distribution are estimated by approximate maximum likelihood estimators (AMLEs), which are simple explicit estimators. Through Monte Carlo simulations, power comparisons of the proposed test with some known competing tests are carried. Finally, an illustrative example is presented and analyzed.  相似文献   

5.
T. Cacoullos and H. Papageorgiou [On some bivariate probability models applicable to traffic accidents and fatalities, Int. Stat. Rev. 48 (1980) 345–356] studied a special class of bivariate discrete distributions appropriate for modeling traffic accidents, and fatalities resulting therefrom. The corresponding random variable may be written as Z=(N,Y), with Y=j=1NXj, where {Xj}j=1N, are independent copies of a (discrete) random variable X, and N is independent of {Xj}j=1N, and follows a Poisson law. If X follows a Poisson law (resp. Binomial law), the resulting distribution is termed Poisson–Poisson (resp. Poisson–Binomial). L2-type goodness-of-fit statistics are constructed for the ‘general distribution’ of this kind, where X may be an arbitrary discrete nonnegative random variable. The test statistics utilize a simple characterization involving the corresponding probability generating function, and are shown to be consistent. The proposed procedures are shown to perform satisfactorily in simulated data, while their application to accident data leads to positive conclusions regarding the modeling ability of this class of bivariate distributions.  相似文献   

6.
Characterization theorems in probability and statistics are widely appreciated for their role in clarifying the structure of the families of probability distributions. Less well known is the role characterization theorems have as a natural, logical and effective starting point for constructing goodness-of-fit tests. The characteristic independence of the mean and variance and of the mean and the third central moment of a normal sample were used, respectively, by Lin and Mudholkar [1980. A simple test for normality against asymmetric alternatives. Biometrika 67, 455–461] and by Mudholkar et al. [2002a. Independence characterizations and testing normality against skewness-kurtosis alternatives. J. Statist. Plann. Inference 104, 485–501] for developing tests of normality. The characteristic independence of the maximum likelihood estimates of the population parameters was similarly used by Mudholkar et al. [2002b. Independence characterization and inverse Gaussian goodness-of-fit. Sankhya A 63, 362–374] to develop a test of the composite inverse Gaussian hypothesis. The gamma models are extensively used for applied research in the areas of econometrics, engineering and biomedical sciences; but there are few goodness-of-fit tests available to test if the data indeed come from a gamma population. In this paper we employ Hwang and Hu's [1999. On a characterization of the gamma distribution: the independence of the sample mean and the sample coefficient of variation. Ann. Inst. Statist. Math. 51, 749–753] characterization of the gamma population in terms of the independence of sample mean and coefficient of variation for developing such a test. The asymptotic null distribution of the proposed test statistic is obtained and empirically refined for use with samples of moderate size.  相似文献   

7.
This study considers a goodness-of-fit test for location-scale time series models with heteroscedasticity, including a broad class of generalized autoregressive conditional heteroscedastic-type models. In financial time series analysis, the correct identification of model innovations is crucial for further inferences in diverse applications such as risk management analysis. To implement a goodness-of-fit test, we employ the residual-based entropy test generated from the residual empirical process. Since this test often shows size distortions and is affected by parameter estimation, its bootstrap version is considered. It is shown that the bootstrap entropy test is weakly consistent, and thereby its usage is justified. A simulation study and data analysis are conducted by way of an illustration.  相似文献   

8.
We give a critical synopsis of classical and recent tests for Poissonity, our emphasis being on procedures which are consistent against general alternatives. Two classes of weighted Cramér–von Mises type test statistics, based on the empirical probability generating function process, are studied in more detail. Both of them generalize already known test statistics by introducing a weighting parameter, thus providing more flexibility with regard to power against specific alternatives. In both cases, we prove convergence in distribution of the statistics under the null hypothesis in the setting of a triangular array of rowwise independent and identically distributed random variables as well as consistency of the corresponding test against general alternatives. Therefore, a sound theoretical basis is provided for the parametric bootstrap procedure, which is applied to obtain critical values in a large-scale simulation study. Each of the tests considered in this study, when implemented via the parametric bootstrap method, maintains a nominal level of significance very closely, even for small sample sizes. The procedures are applied to four well-known data sets.  相似文献   

9.
10.
In this article, having observed the generalized order statistics in a sample, we construct a test for the hypothesis that the underlying distribution is the Pareto I distribution. The Shannon entropy of generalized order statistics is used to test the null hypothesis.  相似文献   

11.
Hollander (1970) proposed a conditionally distribution-free test of bivariate symmetry based on the empirical distribution function. In this paper Hollander’s test statistic is examined In greater detail: in particular; its conditional asymptotic distribution is derived under the null hypothesis as well as under a sequence of local alternatives. Percentage points of the asymptotic distribution are presented; a power comparison between Hollander’s statistic and the likelihood ratio criterion in testing a variant of the sphericity hypothesis in multivariate analysis is made.  相似文献   

12.
The logistic distribution has been used to model growth curves in survival analysis and biological studies. In this article, we propose a goodness-of-fit test for the logistic distribution based on the empirical likelihood ratio. The test is constructed based on the methodology introduced by Vexler and Gurevich [17 A. Vexler and G. Gurevich, Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy, Comput. Stat. Data Anal. 54 (2010), pp. 531545. doi: 10.1016/j.csda.2009.09.025[Crossref], [Web of Science ®] [Google Scholar]]. In order to compute the test statistic, parameters of the distribution are estimated by the method of maximum likelihood. Power comparisons of the proposed test with some known competing tests are carried out via simulations. Finally, an illustrative example is presented and analyzed.  相似文献   

13.
A test based on the studentized empirical characteristic function calculated in a single point is derived. An empirical power comparison is made between this test and tests like the Epps–Pulley, Shapiro–Wilks, Anderson–Darling and other tests for normality. It is shown to outperform the more complicated Epps-Pulley test based on the empirical characteristic function and a Cramér-von Mises type expression in a simulation study. The test performs especially good in large samples and the derived test statistic has an asymptotic normal distribution which is easy to apply.  相似文献   

14.
We introduce a new goodness-of-fit test which can be applied to hypothesis testing about the marginal distribution of dependent data. We derive a new test for the equivalent hypothesis in the space of wavelet coefficients. Such properties of the wavelet transform as orthogonality, localisation and sparsity make the hypothesis testing in wavelet domain easier than in the domain of distribution functions. We propose to test the null hypothesis separately at each wavelet decomposition level to overcome the problem of bi-dimensionality of wavelet indices and to be able to find the frequency where the empirical distribution function differs from the null in case the null hypothesis is rejected. We suggest a test statistic and state its asymptotic distribution under the null and under some of the alternative hypotheses.  相似文献   

15.
The aim of this article is to review existing goodness-of-fit tests for the exponential distribution under progressive Type-II censoring and to provide some new ideas and adjustments. In particular, we consider two-parameter exponentially distributed random variables and adapt the proposed test procedures to our scenario if necessary. Then, we compare their power by an extensive simulation study. Furthermore, we propose five new test procedures that provide reasonable alternatives to those already known.  相似文献   

16.
This paper proposes an approximation to the distribution of a goodness-of-fit statistic proposed recently by Balakrishnan et al. [Balakrishnan, N., Ng, H.K.T. and Kannan, N., 2002, A test of exponentiality based on spacings for progressively Type-II censored data. In: C. Huber-Carol et al. (Eds.), Goodness-of-Fit Tests and Model Validity (Boston: Birkhäuser), pp. 89–111.] for testing exponentiality based on progressively Type-II right censored data. The moments of this statistic can be easily calculated, but its distribution is not known in an explicit form. We first obtain the exact moments of the statistic using Basu's theorem and then the density approximants based on these exact moments of the statistic, expressed in terms of Laguerre polynomials, are proposed. A comparative study of the proposed approximation to the exact critical values, computed by Balakrishnan and Lin [Balakrishnan, N. and Lin, C.T., 2003, On the distribution of a test for exponentiality based on progressively Type-II right censored spacings. Journal of Statistical Computation and Simulation, 73 (4), 277–283.], is carried out. This reveals that the proposed approximation is very accurate.  相似文献   

17.
We propose a data-dependent method for choosing the tuning parameter appearing in many recently developed goodness-of-fit test statistics. The new method, based on the bootstrap, is applicable to a class of distributions for which the null distribution of the test statistic is independent of unknown parameters. No data-dependent choice for this parameter exists in the literature; typically, a fixed value for the parameter is chosen which can perform well for some alternatives, but poorly for others. The performance of the new method is investigated by means of a Monte Carlo study, employing three tests for exponentiality. It is found that the Monte Carlo power of these tests, using the data-dependent choice, compares favourably to the maximum achievable power for the tests calculated over a grid of values of the tuning parameter.  相似文献   

18.
This article addresses the problem of testing the null hypothesis H0 that a random sample of size n is from a distribution with the completely specified continuous cumulative distribution function Fn(x). Kolmogorov-type tests for H0 are based on the statistics C+ n = Sup[Fn(x)?F0(x)] and C? n=Sup[F0(x)?Fn(x)], where Fn(x) is an empirical distribution function. Let F(x) be the true cumulative distribution function, and consider the ordered alternative H1: F(x)≥F0(x) for all x and with strict inequality for some x. Although it is natural to reject H0 and accept H1 if C + n is large, this article shows that a test that is superior in some ways rejects F0 and accepts H1 if Cmdash n is small. Properties of the two tests are compared based on theoretical results and simulated results.  相似文献   

19.
ABSTRACT

The compound Poisson-exponential distribution is a basic model in risk analysis and stochastic hydrology. Graphical procedures for assessing this distribution are proposed which utilize the residuals from a regression involving the moment generating function. Plots furnished with a 95% simultaneous confidence band are constructed. The band and critical points of the equivalent goodness-of-fit test are found by utilizing asymptotic results and fitted regressions involving the supremum of the standardized residuals, the sample size, and the estimated Poisson mean. Simulation results indicate that the tests have good level stability and appreciable power against competing compound Poisson distributions of a mixed type.  相似文献   

20.
Gupta and Kirmani (2008 Gupta, R.C., Kirmani, S.N.U.A. (2008). Characterization based on convex conditional mean function. J. Stat. Plann Inference. 138:964970.[Crossref], [Web of Science ®] [Google Scholar]) showed that the convex conditional mean function (CCMF) characterizes the distribution function completely. In this paper, we introduce a consistent estimator of CCMF and call it empirical convex conditional mean function (ECCMF). Then we construct a simple consistent test of fit based on the integrated squared difference between ECCMF and CCMF. The theoretical and asymptotic properties of the estimator ECCMF and the proposed test statistic are studied. The performance of the constructed test is investigated under different distributions using simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号