首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density ratio models (DRMs) are commonly used semiparametric models to link related populations. Empirical likelihood (EL) under DRM has been demonstrated to be a flexible and useful platform for semiparametric inferences. Since DRM-based EL has the same maximum point and maximum likelihood as its dual form (dual EL), EL-based inferences under DRM are usually made through the latter. A natural question comes up: is there any efficiency loss of doing so? We make a careful comparison of the dual EL and DRM-based EL estimation methods from theory and numerical simulations. We find that their point estimators for any parameter are exactly the same, while they may have different performances in interval estimation. In terms of coverage accuracy, the two intervals are comparable for non- or moderate skewed populations, and the DRM-based EL interval can be much superior for severely skewed populations. A real data example is analysed for illustration purpose.  相似文献   

2.
For an estimation with missing data, a crucial step is to determine if the data are missing completely at random (MCAR), in which case a complete‐case analysis would suffice. Most existing tests for MCAR do not provide a method for a subsequent estimation once the MCAR is rejected. In the setting of estimating means, we propose a unified approach for testing MCAR and the subsequent estimation. Upon rejecting MCAR, the same set of weights used for testing can then be used for estimation. The resulting estimators are consistent if the missingness of each response variable depends only on a set of fully observed auxiliary variables and the true outcome regression model is among the user‐specified functions for deriving the weights. The proposed method is based on the calibration idea from survey sampling literature and the empirical likelihood theory.  相似文献   

3.
ABSTRACT

A simple and efficient goodness-of-fit test for exponentiality is developed by exploiting the characterization of the exponential distribution using the probability integral transformation. We adopted the empirical likelihood methodology in constructing the test statistic. The proposed test statistic has a chi-square limiting distribution. For small to moderate sample sizes Monte-Carlo simulations revealed that our proposed tests are much more superior under increasing failure rate (IFR) and bathtub decreasing-increasing failure rate (BFR) alternatives. Real data examples were used to demonstrate the robustness and applicability of our proposed tests in practice.  相似文献   

4.
5.
ABSTRACT

Stress testing correlation matrix is a challenging exercise for portfolio risk management. Most existing methods directly modify the estimated correlation matrix to satisfy stress conditions while maintaining positive semidefiniteness. The focus lies on technical optimization issues but the resultant stressed correlation matrices usually lack statistical interpretations. In this article, we suggest a novel approach using Empirical Likelihood method to modify the probability weights of sample observations to construct a stressed correlation matrix. The resultant correlations correspond to a stress scenario that is nearest to the observed scenario in a Kullback–Leibler divergence sense. Besides providing a clearer statistical interpretation, the proposed method is non-parametric in distribution, simple in computation and free from subjective tunings. We illustrate the method through an application to a portfolio of international assets.  相似文献   

6.
The problem of testing for bivariate normality using the empirical distribution function is considered. A Cramér-von Mises type statistic is defined and asymptotic percentage points for this statistic given. This involves solving a two-dimensional homogeneous integral equation. Unfortunately the Cramér-von Mises statistic is not invariant under orthogonal transformations of the data so that an invariant statistic is developed. Approximations for the distribution of this statistic are found by Monte Carlo. Applications of the statistics are given. It is shown that the statistics are particularly sensitive to certain kinds of pattern in the data and they could be useful in data analysis apart from providing a formal test of bivariate normality  相似文献   

7.
8.
Empirical likelihood (EL) as a nonparametric approach has been demonstrated to have many desirable merits. While it has intensive development in methodological research, its practical application is less explored due to the requirements of intensive optimizations. Effective and stable algorithms therefore are highly desired for practical implementation of EL. This paper bears the effort to narrow the gap between methodological research and practical application of EL. We try to tackle the computation problems, which are considered difficult by practitioners, by introducing a nested coordinate descent algorithm and one modified version to EL. Coordinate descent as a class of convenient and robust algorithms has been shown in the existing literature to be effective in optimizations. We show that the nested coordinate descent algorithms can be conveniently and stably applied in general EL problems. The combination of nested coordinate descent with the MM algorithm further simplifies the computation. The nested coordinate descent algorithms are a natural and perfect match with inferences based on profile estimation and variable selection in high-dimensional data. Extensive examples are conducted to demonstrate the performance of the nested coordinate descent algorithms in the context of EL.  相似文献   

9.
10.
In this paper, we propose a general kth correlation coefficient between the density function and distribution function of a continuous variable as a measure of symmetry and asymmetry. We first propose a root-n moment-based estimator of the kth correlation coefficient and present its asymptotic results. Next, we consider statistical inference of the kth correlation coefficient by using the empirical likelihood (EL) method. The EL statistic is shown to be asymptotically a standard chi-squared distribution. Last, we propose a residual-based estimator of the kth correlation coefficient for a parametric regression model to test whether the density function of the true model error is symmetric or not. We present the asymptotic results of the residual-based kth correlation coefficient estimator and also construct its EL-based confidence intervals. Simulation studies are conducted to examine the performance of the proposed estimators, and we also use our proposed estimators to analyze the air quality dataset.  相似文献   

11.
In this paper, we propose a nonparametric method based on jackknife empirical likelihood ratio to test the equality of two variances. The asymptotic distribution of the test statistic has been shown to follow χ2 distribution with the degree of freedom 1. Simulations have been conducted to show the type I error and the power compared to Levene's test and F test under different distribution settings. The proposed method has been applied to a real data set to illustrate the testing procedure.  相似文献   

12.
In the dynamic financial market, the change of financial asset prices is always described as a certain random events which result in abrupt changes. The random time when the event occurs is called a change point. As the event happens, in order to mitigate property damage the government should increase the macro-control ability. As a result, we need to find a valid statistical model for change point problem to solve it effectively. This paper proposes a semiparametric model for detecting the change points. According to the research of empirical studies and hypothesis testing we acquire the maximum likelihood estimators of change points. We use the loglikelihood ratio to test the multiple change points. We obtain some asymptotic results. The estimated change point is more efficient than the non parametric one through simulation experiments. Real data application illustrates the usage of the model.  相似文献   

13.
In this paper, we present two new estimators for the entropy of absolutely continuous random variables and consider some of their properties. Consistency of the first estimator is shown by Monte Carlo method, and the consistency of the second estimator is proved theoretically. Using these estimators, two new tests for normality are presented and their powers are compared with the other entropy-based tests. Simulation results show that the proposed estimators and test statistics perform very well. Finally, a real example is presented and analysed.  相似文献   

14.
The logistic distribution has been used to model growth curves in survival analysis and biological studies. In this article, we propose a goodness-of-fit test for the logistic distribution based on the empirical likelihood ratio. The test is constructed based on the methodology introduced by Vexler and Gurevich [17 A. Vexler and G. Gurevich, Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy, Comput. Stat. Data Anal. 54 (2010), pp. 531545. doi: 10.1016/j.csda.2009.09.025[Crossref], [Web of Science ®] [Google Scholar]]. In order to compute the test statistic, parameters of the distribution are estimated by the method of maximum likelihood. Power comparisons of the proposed test with some known competing tests are carried out via simulations. Finally, an illustrative example is presented and analyzed.  相似文献   

15.
In this article, we apply the empirical likelihood method to make inference on the bivariate survival function of paired failure times by estimating the survival function of censored time with the Kaplan–Meier estimator. Adjusted empirical likelihood (AEL) confidence intervals for the bivariate survival function are developed. We conduct a simulation study to compare the proposed AEL method with other methods. The simulation study shows the proposed AEL method has better performance than other existing methods. We illustrate the proposed method by analyzing the skin graft data.  相似文献   

16.
ABSTRACT

We consider the use of modern likelihood asymptotics in the construction of confidence intervals for the parameter which determines the skewness of the distribution of the maximum/minimum of an exchangeable bivariate normal random vector. Simulation studies were conducted to investigate the accuracy of the proposed methods and to compare them to available alternatives. Accuracy is evaluated in terms of both coverage probability and expected length of the interval. We furthermore illustrate the suitability of our proposals by means of two data sets, consisting of, respectively, measurements taken on the brains of 10 mono-zygotic twins and measurements of mineral content of bones in the dominant and non-dominant arms for 25 elderly women.  相似文献   

17.
Variance estimation is a fundamental yet important problem in statistical modelling. In this paper, we propose jackknife empirical likelihood (JEL) methods for the error variance in a linear regression model. We prove that the JEL ratio converges to the standard chi-squared distribution. The asymptotic chi-squared properties for the adjusted JEL and extended JEL estimators are also established. Extensive simulation studies to compare the new JEL methods with the standard method in terms of coverage probability and interval length are conducted, and the simulation results show that our proposed JEL methods perform better than the standard method. We also illustrate the proposed methods using two real data sets.  相似文献   

18.
The plug-in estimator is one of the most popular approaches to the estimation of diversity indices. In this paper, we study its asymptotic distribution for a large class of diversity indices on countable alphabets. In particular, we give conditions for the plug-in estimator to be asymptotically normal, and in the case of uniform distributions, where asymptotic normality fails, we give conditions for the asymptotic distribution to be chi-squared. Our results cover some of the most commonly used indices, including Simpson's index, Reńyi's entropy and Shannon's entropy.  相似文献   

19.
In this article, we employ the jackknife empirical likelihood (JEL) method to construct the confidence regions for the difference of the means of two d-dimensional samples. Compared with traditional EL for the two-sample mean problem, JEL is extremely simpler to use in practice and is more effective in computing. Based on the JEL ratio test, a version of Wilks’ theorem is developed. Furthermore, to improve the coverage accuracy of confidence regions, a Bartlett correction is applied. The effectiveness of the proposed method is demonstrated by a simulation study and a real data analysis.  相似文献   

20.
We focus on the nonparametric regression of a scalar response on a functional explanatory variable. As an alternative to the well-known Nadaraya-Watson estimator for regression function in this framework, the locally modelled regression estimator performs very well [cf. [Barrientos-Marin, J., Ferraty, F., and Vieu, P. (2010), ‘Locally Modelled Regression and Functional Data’, Journal of Nonparametric Statistics, 22, 617–632]. In this paper, the asymptotic properties of locally modelled regression estimator for functional data are considered. The mean-squared convergence as well as asymptotic normality for the estimator are established. We also adapt the empirical likelihood method to construct the point-wise confidence intervals for the regression function and derive the Wilk's phenomenon for the empirical likelihood inference. Furthermore, a simulation study is presented to illustrate our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号