首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Jeffreys-rule prior and the marginal independence Jeffreys prior are recently proposed in Fonseca et al. [Objective Bayesian analysis for the Student-t regression model, Biometrika 95 (2008), pp. 325–333] as objective priors for the Student-t regression model. The authors showed that the priors provide proper posterior distributions and perform favourably in parameter estimation. Motivated by a practical financial risk management application, we compare the performance of the two Jeffreys priors with other priors proposed in the literature in a problem of estimating high quantiles for the Student-t model with unknown degrees of freedom. Through an asymptotic analysis and a simulation study, we show that both Jeffreys priors perform better in using a specific quantile of the Bayesian predictive distribution to approximate the true quantile.  相似文献   

2.
Abstract. We study the Jeffreys prior and its properties for the shape parameter of univariate skew‐t distributions with linear and nonlinear Student's t skewing functions. In both cases, we show that the resulting priors for the shape parameter are symmetric around zero and proper. Moreover, we propose a Student's t approximation of the Jeffreys prior that makes an objective Bayesian analysis easy to perform. We carry out a Monte Carlo simulation study that demonstrates an overall better behaviour of the maximum a posteriori estimator compared with the maximum likelihood estimator. We also compare the frequentist coverage of the credible intervals based on the Jeffreys prior and its approximation and show that they are similar. We further discuss location‐scale models under scale mixtures of skew‐normal distributions and show some conditions for the existence of the posterior distribution and its moments. Finally, we present three numerical examples to illustrate the implications of our results on inference for skew‐t distributions.  相似文献   

3.
Abstract

This paper investigates the statistical analysis of grouped accelerated temperature cycling test data when the product lifetime follows a Weibull distribution. A log-linear acceleration equation is derived from the Coffin-Manson model. The problem is transformed to a constant-stress accelerated life test with grouped data and multiple acceleration variables. The Jeffreys prior and reference priors are derived. Maximum likelihood estimation and Bayesian estimation with objective priors are obtained by applying the technique of data augmentation. A simulation study shows that both of these two methods perform well when sample size is large, and the Bayesian method gives better performance under small sample sizes.  相似文献   

4.
The Generalized gamma (GG) distribution plays an important role in statistical analysis. For this distribution, we derive non-informative priors using formal rules, such as Jeffreys prior, maximal data information prior and reference priors. We have shown that these most popular formal rules with natural ordering of parameters, lead to priors with improper posteriors. This problem is overcome by considering a prior averaging approach discussed in Berger et al. [Overall objective priors. Bayesian Analysis. 2015;10(1):189–221]. The obtained hybrid Jeffreys-reference prior is invariant under one-to-one transformations and yields a proper posterior distribution. We obtained good frequentist properties of the proposed prior using a detailed simulation study. Finally, an analysis of the maximum annual discharge of the river Rhine at Lobith is presented.  相似文献   

5.
For the unbalanced one-way random effects model with heterogeneous error variances, we propose the non-informative priors for the between-group variance and develop the first- and second-order matching priors. It turns out that the second-order matching priors do not exist and the reference prior and Jeffreys prior do not satisfy a first-order matching criterion. We also show that the first-order matching prior meets the frequentist target coverage probabilities much better than the Jeffreys prior and reference prior through simulation study, and the Bayesian credible intervals based on the matching prior and reference prior give shorter intervals than the existing confidence intervals by examples.  相似文献   

6.
In this article, we study Bayesian estimation for the covariance matrix Σ and the precision matrix Ω (the inverse of the covariance matrix) in the star-shaped model with missing data. Based on a Cholesky-type decomposition of the precision matrix Ω = ΨΨ, where Ψ is a lower triangular matrix with positive diagonal elements, we develop the Jeffreys prior and a reference prior for Ψ. We then introduce a class of priors for Ψ, which includes the invariant Haar measures, Jeffreys prior, and reference prior. The posterior properties are discussed and the closed-form expressions for Bayesian estimators for the covariance matrix Σ and the precision matrix Ω are derived under the Stein loss, entropy loss, and symmetric loss. Some simulation results are given for illustration.  相似文献   

7.
We consider the problem of deriving formal objective priors for the causal/stationary autoregressive model of order p. We compare the frequentist behaviour of the most common default priors, namely the uniform (over the stationarity region) prior, the Jeffreys’ prior and the reference prior.  相似文献   

8.
One critical issue in the Bayesian approach is choosing the priors when there is not enough prior information to specify hyperparameters. Several improper noninformative priors for capture-recapture models were proposed in the literature. It is known that the Bayesian estimate can be sensitive to the choice of priors, especially when sample size is small to moderate. Yet, how to choose a noninformative prior for a given model remains a question. In this paper, as the first step, we consider the problem of estimating the population size for MtMt model using noninformative priors. The MtMt model has prodigious application in wildlife management, ecology, software liability, epidemiological study, census under-count, and other research areas. Four commonly used noninformative priors are considered. We find that the choice of noninformative priors depends on the number of sampling occasions only. The guidelines on the choice of noninformative priors are provided based on the simulation results. Propriety of applying improper noninformative prior is discussed. Simulation studies are developed to inspect the frequentist performance of Bayesian point and interval estimates with different noninformative priors under various population sizes, capture probabilities, and the number of sampling occasions. The simulation results show that the Bayesian approach can provide more accurate estimates of the population size than the MLE for small samples. Two real-data examples are given to illustrate the method.  相似文献   

9.
In this article, Bayesian approach is applied to estimate the parameters of Log-logistic distribution under reference prior and Jeffreys’ prior. The reference prior is derived and it is found that the reference prior is also a second-order matching priors as for the case of any parameter of interest. The Bayesian estimators cannot be obtained in explicit forms. Metropolis within Gibbs sampling algorithm is used to obtain the Bayesian estimators. The Bayesian estimates are compared with the maximum likelihood estimates via simulation study. A real dataset is considered for illustrative purposes.  相似文献   

10.
In this paper, we present a Bayesian analysis of double seasonal autoregressive moving average models. We first consider the problem of estimating unknown lagged errors in the moving average part using non linear least squares method, and then using natural conjugate and Jeffreys’ priors we approximate the marginal posterior distributions to be multivariate t and gamma distributions for the model coefficients and precision, respectively. We evaluate the proposed Bayesian methodology using simulation study, and apply to real-world hourly electricity load data sets.  相似文献   

11.
The authors develop default priors for the Gaussian random field model that includes a nugget parameter accounting for the effects of microscale variations and measurement errors. They present the independence Jeffreys prior, the Jeffreys‐rule prior and a reference prior and study posterior propriety of these and related priors. They show that the uniform prior for the correlation parameters yields an improper posterior. In case of known regression and variance parameters, they derive the Jeffreys prior for the correlation parameters. They prove posterior propriety and obtain that the predictive distributions at ungauged locations have finite variance. Moreover, they show that the proposed priors have good frequentist properties, except for those based on the marginal Jeffreys‐rule prior for the correlation parameters, and illustrate their approach by analyzing a dataset of zinc concentrations along the river Meuse. The Canadian Journal of Statistics 40: 304–327; 2012 © 2012 Statistical Society of Canada  相似文献   

12.
We consider three interval estimators for linear functions of Poisson rates: a Wald interval, a t interval with Satterthwaite's degrees of freedom, and a Bayes interval using noninformative priors. The differences in these intervals are illustrated using data from the Crash Records Bureau of the Texas Department of Public Safety. We then investigate the relative performance of these intervals via a simulation study. This study demonstrates that the Wald interval performs poorly when expected counts are less than 5, while the interval based on the noninformative prior performs best. It also shows that the Bayes interval and the interval based on the t distribution perform comparably well for more moderate expected counts.  相似文献   

13.
Liseo and Loperfido [A note on reference priors for the scalar skew-normal distribution. J Statist Plann Inference. 2006;136(2):373–389] studied some peculiar features of default Bayes analysis of the scalar skew-normal model. In particular, they showed that, by considering the simplest model with a single unknown parameter λ of skewness, the reference – or Jeffreys’ – prior for this parameter is proper. They proved that tails of Jeffreys’ prior are of order O?3/2). But they made a mistake in their proof. In this note, we will modify their proof.  相似文献   

14.
ABSTRACT

In queuing theory, a major interest of researchers is studying the behavior and formation process and analyzing the performance characteristics of queues, particularly the traffic intensity, which is defined as the ratio between the arrival rate and the service rate. How these parameters can be estimated using some statistical inferential method is the mathematical problem treated here. This article aims to obtain better Bayesian estimates for the traffic intensity of M/M/1 queues, which, in Kendall notation, stand for Markovian single-server infinity queues. The Jeffreys prior is proposed to obtain the posterior and predictive distributions of some parameters of interest. Samples are obtained through simulation and some performance characteristics are analyzed. It is observed from the Bayes factor that Jeffreys prior is competitive, among informative and non-informative prior distributions, and presents the best performance in many of the cases tested.  相似文献   

15.
This paper discusses characteristics of standard conjugate priors and their induced posteriors in Bayesian inference for von Mises–Fisher distributions, using either the canonical natural exponential family or the more commonly employed polar coordinate parameterizations. We analyze when standard conjugate priors as well as posteriors are proper, and investigate the Jeffreys prior for the von Mises–Fisher family. Finally, we characterize the proper distributions in the standard conjugate family of the (matrix-valued) von Mises–Fisher distributions on Stiefel manifolds.  相似文献   

16.
In this paper, we develop a matching prior for the product of means in several normal distributions with unrestricted means and unknown variances. For this problem, properly assigning priors for the product of normal means has been issued because of the presence of nuisance parameters. Matching priors, which are priors matching the posterior probabilities of certain regions with their frequentist coverage probabilities, are commonly used but difficult to derive in this problem. We developed the first order probability matching priors for this problem; however, the developed matching priors are unproper. Thus, we apply an alternative method and derive a matching prior based on a modification of the profile likelihood. Simulation studies show that the derived matching prior performs better than the uniform prior and Jeffreys’ prior in meeting the target coverage probabilities, and meets well the target coverage probabilities even for the small sample sizes. In addition, to evaluate the validity of the proposed matching prior, Bayesian credible interval for the product of normal means using the matching prior is compared to Bayesian credible intervals using the uniform prior and Jeffrey’s prior, and the confidence interval using the method of Yfantis and Flatman.  相似文献   

17.
Bivariate exponential models have often been used for the analysis of competing risks data involving two correlated risk components. Competing risks data consist only of the time to failure and cause of failure. In situations where there is positive probability of simultaneous failure, possibly the most widely used model is the Marshall–Olkin (J. Amer. Statist. Assoc. 62 (1967) 30) bivariate lifetime model. This distribution is not absolutely continuous as it involves a singularity component. However, the likelihood function based on the competing risks data is then identifiable, and any inference, Bayesian or frequentist, can be carried out in a straightforward manner. For the analysis of absolutely continuous bivariate exponential models, standard approaches often run into difficulty due to the lack of a fully identifiable likelihood (Basu and Ghosh; Commun. Statist. Theory Methods 9 (1980) 1515). To overcome the nonidentifiability, the usual frequentist approach is based on an integrated likelihood. Such an approach is implicit in Wada et al. (Calcutta Statist. Assoc. Bull. 46 (1996) 197) who proved some related asymptotic results. We offer in this paper an alternative Bayesian approach. Since systematic prior elicitation is often difficult, the present study focuses on Bayesian analysis with noninformative priors. It turns out that with an appropriate reparameterization, standard noninformative priors such as Jeffreys’ prior and its variants can be applied directly even though the likelihood is not fully identifiable. Two noninformative priors are developed that consist of Laplace's prior for nonidentifiable parameters and Laplace's and Jeffreys's priors for identifiable parameters. The resulting Bayesian procedures possess some frequentist optimality properties as well. Finally, these Bayesian methods are illustrated with analyses of a data set originating out of a lung cancer clinical trial conducted by the Eastern Cooperative Oncology Group.  相似文献   

18.
In this paper we use the Kullback-Leibler divergence to measure the distance between the posteriors of the autoregressive (AR) model coefficients, aiming to evaluate mathematically the sensitivity of the coefficients posterior to different types of priors, i.e. Jeffreys’, g, and natural conjugate priors. In addition, we evaluate the impact of the posteriors distance in Bayesian estimates of mean and variance of the model coefficients by generating a large number of Monte Carlo simulations from the posteriors. Simulation study results show that the coefficients posterior is sensitive to prior distributions, and the posteriors distance has more influence on Bayesian estimates of variance than those of mean of the model coefficients. Same results are obtained from the application to real-world time series datasets.  相似文献   

19.
For normal populations with unequal variances, we develop matching priors and reference priors for a linear combination of the means. Here, we find three second-order matching priors: a highest posterior density (HPD) matching prior, a cumulative distribution function (CDF) matching prior, and a likelihood ratio (LR) matching prior. Furthermore, we show that the reference priors are all first-order matching priors, but that they do not satisfy the second-order matching criterion that establishes the symmetry and the unimodality of the posterior under the developed priors. The results of a simulation indicate that the second-order matching prior outperforms the reference priors in terms of matching the target coverage probabilities, in a frequentist sense. Finally, we compare the Bayesian credible intervals based on the developed priors with the confidence intervals derived from real data.  相似文献   

20.
In this paper, we develop noninformative priors for the generalized half-normal distribution when scale and shape parameters are of interest, respectively. Especially, we develop the first and second order matching priors for both parameters. For the shape parameter, we reveal that the second order matching prior is a highest posterior density (HPD) matching prior and a cumulative distribution function (CDF) matching prior. In addition, it matches the alternative coverage probabilities up to the second order. For the scale parameter, we reveal that the second order matching prior is neither a HPD matching prior nor a CDF matching prior. Also, it does not match the alternative coverage probabilities up to the second order. For both parameters, we present that the one-at-a-time reference prior is a second order matching prior. However, Jeffreys’ prior is neither a first nor a second order matching prior. Methods are illustrated with both a simulation study and a real data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号