首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Debasis Kundu 《Statistics》2017,51(6):1377-1397
Azzalini [A class of distributions which include the normal. Scand J Stat. 1985;12:171–178] introduced a skew-normal distribution of which normal distribution is a special case. Recently, Kundu [Geometric skew normal distribution. Sankhya Ser B. 2014;76:167–189] introduced a geometric skew-normal distribution and showed that it has certain advantages over Azzalini's skew-normal distribution. In this paper we discuss about the multivariate geometric skew-normal (MGSN) distribution. It can be used as an alternative to Azzalini's skew-normal distribution. We discuss different properties of the proposed distribution. It is observed that the joint probability density function of the MGSN distribution can take a variety of shapes. Several characterization results have been established. Generation from an MGSN distribution is quite simple, hence the simulation experiments can be performed quite easily. The maximum likelihood estimators of the unknown parameters can be obtained quite conveniently using the expectation–maximization (EM) algorithm. We perform some simulation experiments and it is observed that the performances of the proposed EM algorithm are quite satisfactory. Furthermore, the analyses of two data sets have been performed, and it is observed that the proposed methods and the model work very well.  相似文献   

2.
Partially linear models (PLMs) are an important tool in modelling economic and biometric data and are considered as a flexible generalization of the linear model by including a nonparametric component of some covariate into the linear predictor. Usually, the error component is assumed to follow a normal distribution. However, the theory and application (through simulation or experimentation) often generate a great amount of data sets that are skewed. The objective of this paper is to extend the PLMs allowing the errors to follow a skew-normal distribution [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178], increasing the flexibility of the model. In particular, we develop the expectation-maximization (EM) algorithm for linear regression models and diagnostic analysis via local influence as well as generalized leverage, following [H. Zhu and S. Lee, Local influence for incomplete-data models, J. R. Stat. Soc. Ser. B 63 (2001), pp. 111–126]. A simulation study is also conducted to evaluate the efficiency of the EM algorithm. Finally, a suitable transformation is applied in a data set on ragweed pollen concentration in order to fit PLMs under asymmetric distributions. An illustrative comparison is performed between normal and skew-normal errors.  相似文献   

3.
Grubbs’s model (Grubbs, Encycl Stat Sci 3:42–549, 1983) is used for comparing several measuring devices, and it is common to assume that the random terms have a normal (or symmetric) distribution. In this paper, we discuss the extension of this model to the class of scale mixtures of skew-normal distributions. Our results provide a useful generalization of the symmetric Grubbs’s model (Osorio et al., Comput Stat Data Anal, 53:1249–1263, 2009) and the asymmetric skew-normal model (Montenegro et al., Stat Pap 51:701–715, 2010). We discuss the EM algorithm for parameter estimation and the local influence method (Cook, J Royal Stat Soc Ser B, 48:133–169, 1986) for assessing the robustness of these parameter estimates under some usual perturbation schemes. The results and methods developed in this paper are illustrated with a numerical example.  相似文献   

4.
In this paper, we discuss the extension of some diagnostic procedures to multivariate measurement error models with scale mixtures of skew-normal distributions (Lachos et?al., Statistics 44:541?C556, 2010c). This class provides a useful generalization of normal (and skew-normal) measurement error models since the random term distributions cover symmetric, asymmetric and heavy-tailed distributions, such as skew-t, skew-slash and skew-contaminated normal, among others. Inspired by the EM algorithm proposed by Lachos et?al. (Statistics 44:541?C556, 2010c), we develop a local influence analysis for measurement error models, following Zhu and Lee??s (J R Stat Soc B 63:111?C126, 2001) approach. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex and Cook??s well-known approach can be very difficult to apply to achieve local influence measures. Some useful perturbation schemes are also discussed. In addition, a score test for assessing the homogeneity of the skewness parameter vector is presented. Finally, the methodology is exemplified through a real data set, illustrating the usefulness of the proposed methodology.  相似文献   

5.
The robust estimation and the local influence analysis for linear regression models with scale mixtures of multivariate skew-normal distributions have been developed in this article. The main virtue of considering the linear regression model under the class of scale mixtures of skew-normal distributions is that they have a nice hierarchical representation which allows an easy implementation of inference. Inspired by the expectation maximization algorithm, we have developed a local influence analysis based on the conditional expectation of the complete-data log-likelihood function, which is a measurement invariant under reparametrizations. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex and with Cook's well-known approach it can be very difficult to obtain measures of the local influence. Some useful perturbation schemes are discussed. In order to examine the robust aspect of this flexible class against outlying and influential observations, some simulation studies have also been presented. Finally, a real data set has been analyzed, illustrating the usefulness of the proposed methodology.  相似文献   

6.
Skew scale mixtures of normal distributions are often used for statistical procedures involving asymmetric data and heavy-tailed. The main virtue of the members of this family of distributions is that they are easy to simulate from and they also supply genuine expectation-maximization (EM) algorithms for maximum likelihood estimation. In this paper, we extend the EM algorithm for linear regression models and we develop diagnostics analyses via local influence and generalized leverage, following Zhu and Lee's approach. This is because Cook's well-known approach cannot be used to obtain measures of local influence. The EM-type algorithm has been discussed with an emphasis on the skew Student-t-normal, skew slash, skew-contaminated normal and skew power-exponential distributions. Finally, results obtained for a real data set are reported, illustrating the usefulness of the proposed method.  相似文献   

7.
Aiming to avoid the sensitivity in the parameters estimation due to atypical observations or skewness, we develop asymmetric nonlinear regression models with mixed-effects, which provide alternatives to the use of normal distribution and other symmetric distributions. Nonlinear models with mixed-effects are explored in several areas of knowledge, especially when data are correlated, such as longitudinal data, repeated measures and multilevel data, in particular, for their flexibility in dealing with measures of areas such as economics and pharmacokinetics. The random components of the present model are assumed to follow distributions that belong to scale mixtures of skew-normal (SMSN) distribution family, that encompasses distributions with light and heavy tails, such as skew-normal, skew-Student-t, skew-contaminated normal and skew-slash, as well as symmetrical versions of these distributions. For the parameters estimation we obtain a numerical solution via the EM algorithm and its extensions, and the Newton-Raphson algorithm. An application with pharmacokinetic data shows the superiority of the proposed models, for which the skew-contaminated normal distribution has shown to be the most adequate distribution. A brief simulation study points to good properties of the parameter vector estimators obtained by the maximum likelihood method.  相似文献   

8.
In many studies, the data collected are subject to some upper and lower detection limits. Hence, the responses are either left or right censored. A complication arises when these continuous measures present heavy tails and asymmetrical behavior; simultaneously. For such data structures, we propose a robust-censored linear model based on the scale mixtures of skew-normal (SMSN) distributions. The SMSN is an attractive class of asymmetrical heavy-tailed densities that includes the skew-normal, skew-t, skew-slash, skew-contaminated normal and the entire family of scale mixtures of normal (SMN) distributions as special cases. We propose a fast estimation procedure to obtain the maximum likelihood (ML) estimates of the parameters, using a stochastic approximation of the EM (SAEM) algorithm. This approach allows us to estimate the parameters of interest easily and quickly, obtaining as a byproducts the standard errors, predictions of unobservable values of the response and the log-likelihood function. The proposed methods are illustrated through real data applications and several simulation studies.  相似文献   

9.
Scale mixtures of normal distributions form a class of symmetric thick-tailed distributions that includes the normal one as a special case. In this paper we consider local influence analysis for measurement error models (MEM) when the random error and the unobserved value of the covariates jointly follow scale mixtures of normal distributions, providing an appealing robust alternative to the usual Gaussian process in measurement error models. In order to avoid difficulties in estimating the parameter of the mixing variable, we fixed it previously, as recommended by Lange et al. (J Am Stat Assoc 84:881–896, 1989) and Berkane et al. (Comput Stat Data Anal 18:255–267, 1994). The local influence method is used to assess the robustness aspects of the parameter estimates under some usual perturbation schemes. However, as the observed log-likelihood associated with this model involves some integrals, Cook’s well–known approach may be hard to apply to obtain measures of local influence. Instead, we develop local influence measures following the approach of Zhu and Lee (J R Stat Soc Ser B 63:121–126, 2001), which is based on the EM algorithm. Results obtained from a real data set are reported, illustrating the usefulness of the proposed methodology, its relative simplicity, adaptability and practical usage.  相似文献   

10.
Skew-normal/independent distributions are a class of asymmetric thick-tailed distributions that include the skew-normal distribution as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in multivariate measurement errors models. We propose the use of skew-normal/independent distributions to model the unobserved value of the covariates (latent variable) and symmetric normal/independent distributions for the random errors term, providing an appealing robust alternative to the usual symmetric process in multivariate measurement errors models. Among the distributions that belong to this class of distributions, we examine univariate and multivariate versions of the skew-normal, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.  相似文献   

11.
Linear mixed models were developed to handle clustered data and have been a topic of increasing interest in statistics for the past 50 years. Generally, the normality (or symmetry) of the random effects is a common assumption in linear mixed models but it may, sometimes, be unrealistic, obscuring important features of among-subjects variation. In this article, we utilize skew-normal/independent distributions as a tool for robust modeling of linear mixed models under a Bayesian paradigm. The skew-normal/independent distributions is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal distribution, skew-t, skew-slash and the skew-contaminated normal distributions as special cases, providing an appealing robust alternative to the routine use of symmetric distributions in this type of models. The methods developed are illustrated using a real data set from Framingham cholesterol study.  相似文献   

12.
We present a new class of models to fit longitudinal data, obtained with a suitable modification of the classical linear mixed-effects model. For each sample unit, the joint distribution of the random effect and the random error is a finite mixture of scale mixtures of multivariate skew-normal distributions. This extension allows us to model the data in a more flexible way, taking into account skewness, multimodality and discrepant observations at the same time. The scale mixtures of skew-normal form an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal, skew-Student-t, skew-slash and the skew-contaminated normal distributions as special cases, being a flexible alternative to the use of the corresponding symmetric distributions in this type of models. A simple efficient MCMC Gibbs-type algorithm for posterior Bayesian inference is employed. In order to illustrate the usefulness of the proposed methodology, two artificial and two real data sets are analyzed.  相似文献   

13.
In this work, we develop some diagnostics for nonlinear regression model with scale mixtures of skew-normal (SMSN) and first-order autoregressive errors. The SMSN distribution class covers symmetric as well as asymmetric and heavy-tailed distributions, which offers a more flexible framework for modelling. Maximum-likelihood (ML) estimates are computed via an expectation–maximization-type algorithm. Local influence diagnostics and score test for the correlation are also derived. The performances of the ML estimates and the test statistic are investigated through Monte Carlo simulations. Finally, a real data set is used to illustrate our diagnostic methods.  相似文献   

14.
In this article, utilizing a scale mixture of skew-normal distribution in which mixing random variable is assumed to follow a mixture model with varying weights for each observation, we introduce a generalization of skew-normal linear regression model with the aim to provide resistant results. This model, which also includes the skew-slash distribution in a particular case, allows us to accommodate and detect outlying observations under the skew-normal linear regression model. Inferences about the model are carried out through the empirical Bayes approach. The conditions for propriety of the posterior and for existence of posterior moments are given under the standard noninformative priors for regression and scale parameters as well as proper prior for skewness parameter. Then, for Bayesian inference, a Markov chain Monte Carlo method is described. Since posterior results depend on the prior hyperparameters, we estimate them adopting the empirical Bayes method as well as using a Monte Carlo EM algorithm. Furthermore, to identify possible outliers, we also apply the Bayes factor obtained through the generalized Savage-Dickey density ratio. Examining the proposed approach on simulated instance and real data, it is found to provide not only satisfactory parameter estimates rather allow identifying outliers favorably.  相似文献   

15.
The existing studies on spatial dynamic panel data model (SDPDM) mainly focus on the normality assumption of response variables and random effects. This assumption may be inappropriate in some applications. This paper proposes a new SDPDM by assuming that response variables and random effects follow the multivariate skew-normal distribution. A Markov chain Monte Carlo algorithm is developed to evaluate Bayesian estimates of unknown parameters and random effects in skew-normal SDPDM by combining the Gibbs sampler and the Metropolis–Hastings algorithm. A Bayesian local influence analysis method is developed to simultaneously assess the effect of minor perturbations to the data, priors and sampling distributions. Simulation studies are conducted to investigate the finite-sample performance of the proposed methodologies. An example is illustrated by the proposed methodologies.  相似文献   

16.
This article addresses the density estimation problem using nonparametric Bayesian approach. It is considered hierarchical mixture models where the uncertainty about the mixing measure is modeled using the Dirichlet process. The main goal is to build more flexible models for density estimation. Extensions of the normal mixture model via Dirichlet process previously introduced in the literature are twofold. First, Dirichlet mixtures of skew-normal distributions are considered, say, in the first stage of the hierarchical model, the normal distribution is replaced by the skew-normal one. We also assume a skew-normal distribution as the center measure in the Dirichlet mixture of normal distributions. Some important results related to Bayesian inference in the location-scale skew-normal family are introduced. In particular, we obtain the stochastic representations for the full conditional distributions of the location and skewness parameters. The algorithm introduced by MacEachern and Müller in 1998 MacEachern, S.N., Müller, P. (1998). Estimating mixture of Dirichlet Process models. J. Computat. Graph. Statist. 7(2):223238.[Taylor & Francis Online], [Web of Science ®] [Google Scholar] is used to sample from the posterior distributions. The models are compared considering simulated data sets. Finally, the well-known Old Faithful Geyser data set is analyzed using the proposed models and the Dirichlet mixture of normal distributions. The model based on Dirichlet mixture of skew-normal distributions captured the data bimodality and skewness shown in the empirical distribution.  相似文献   

17.
This paper focuses on the development of a new extension of the generalized skew-normal distribution introduced in Gómez et al. [Generalized skew-normal models: properties and inference. Statistics. 2006;40(6):495–505]. To produce the generalization a new parameter is introduced, the signal of which has the flexibility of yielding unimodal as well as bimodal distributions. We study its properties, derive a stochastic representation and state some expressions that facilitate moments derivation. Maximum likelihood is implemented via the EM algorithm which is based on the stochastic representation derived. We show that the Fisher information matrix is singular and discuss ways of getting round this problem. An illustration using real data reveals that the model can capture well special data features such as bimodality and asymmetry.  相似文献   

18.
A special source of difficulty in the statistical analysis is the possibility that some subjects may not have a complete observation of the response variable. Such incomplete observation of the response variable is called censoring. Censorship can occur for a variety of reasons, including limitations of measurement equipment, design of the experiment, and non-occurrence of the event of interest until the end of the study. In the presence of censoring, the dependence of the response variable on the explanatory variables can be explored through regression analysis. In this paper, we propose to examine the censorship problem in context of the class of asymmetric, i.e., we have proposed a linear regression model with censored responses based on skew scale mixtures of normal distributions. We develop a Monte Carlo EM (MCEM) algorithm to perform maximum likelihood inference of the parameters in the proposed linear censored regression models with skew scale mixtures of normal distributions. The MCEM algorithm has been discussed with an emphasis on the skew-normal, skew Student-t-normal, skew-slash and skew-contaminated normal distributions. To examine the performance of the proposed method, we present some simulation studies and analyze a real dataset.  相似文献   

19.
In this paper, we develop a generalized version of the two-piece skew normal distribution of Kim [On a class of two-piece skew-normal distributions, Statistics 39(6) (2005), pp. 537–553] and derive explicit expressions for its distribution function and characteristic function and discuss some of its important properties. Further estimation of the parameters of the generalized distribution is carried out.  相似文献   

20.
We propose here a robust multivariate extension of the bivariate Birnbaum–Saunders (BS) distribution derived by Kundu et al. [Bivariate Birnbaum–Saunders distribution and associated inference. J Multivariate Anal. 2010;101:113–125], based on scale mixtures of normal (SMN) distributions that are used for modelling symmetric data. This resulting multivariate BS-type distribution is an absolutely continuous distribution whose marginal and conditional distributions are of BS-type distribution of Balakrishnan et al. [Estimation in the Birnbaum–Saunders distribution based on scalemixture of normals and the EM algorithm. Stat Oper Res Trans. 2009;33:171–192]. Due to the complexity of the likelihood function, parameter estimation by direct maximization is very difficult to achieve. For this reason, we exploit the nice hierarchical representation of the proposed distribution to propose a fast and accurate EM algorithm for computing the maximum likelihood (ML) estimates of the model parameters. We then evaluate the finite-sample performance of the developed EM algorithm and the asymptotic properties of the ML estimates through empirical experiments. Finally, we illustrate the obtained results with a real data and display the robustness feature of the estimation procedure developed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号