首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The performances of six confidence intervals for estimating the arithmetic mean of a lognormal distribution are compared using simulated data. The first interval considered is based on an exact method and is recommended in U.S. EPA guidance documents for calculating upper confidence limits for contamination data. Two intervals are based on asymptotic properties due to the Central Limit Theorem, and the other three are based on transformations and maximum likelihood estimation. The effects of departures from lognormality on the performance of these intervals are also investigated. The gamma distribution is considered to represent departures from the lognormal distribution. The average width and coverage of each confidence interval is reported for varying mean, variance, and sample size. In the lognormal case, the exact interval gives good coverage, but for small sample sizes and large variances the confidence intervals are too wide. In these cases, an approximation that incorporates sampling variability of the sample variance tends to perform better. When the underlying distribution is a gamma distribution, the intervals based upon the Central Limit Theorem tend to perform better than those based upon lognormal assumptions.  相似文献   

2.
The lognormal distribution is currently used extensively to describe the distribution of positive random variables. This is especially the case with data pertaining to occupational health and other biological data. One particular application of the data is statistical inference with regards to the mean of the data. Other authors, namely Zou et al. (2009), have proposed procedures involving the so-called “method of variance estimates recovery” (MOVER), while an alternative approach based on simulation is the so-called generalized confidence interval, discussed by Krishnamoorthy and Mathew (2003). In this paper we compare the performance of the MOVER-based confidence interval estimates and the generalized confidence interval procedure to coverage of credibility intervals obtained using Bayesian methodology using a variety of different prior distributions to estimate the appropriateness of each. An extensive simulation study is conducted to evaluate the coverage accuracy and interval width of the proposed methods. For the Bayesian approach both the equal-tail and highest posterior density (HPD) credibility intervals are presented. Various prior distributions (Independence Jeffreys' prior, Jeffreys'-Rule prior, namely, the square root of the determinant of the Fisher Information matrix, reference and probability-matching priors) are evaluated and compared to determine which give the best coverage with the most efficient interval width. The simulation studies show that the constructed Bayesian confidence intervals have satisfying coverage probabilities and in some cases outperform the MOVER and generalized confidence interval results. The Bayesian inference procedures (hypothesis tests and confidence intervals) are also extended to the difference between two lognormal means as well as to the case of zero-valued observations and confidence intervals for the lognormal variance. In the last section of this paper the bivariate lognormal distribution is discussed and Bayesian confidence intervals are obtained for the difference between two correlated lognormal means as well as for the ratio of lognormal variances, using nine different priors.  相似文献   

3.
Suppose that there are independent samples available from several multivariate normal populations with the same mean vector m? but possibly different covariance matrices. The problem of developing a confidence region for the common mean vector based on all the samples is considered. An exact confidence region centered at a generalized version of the well-known Graybill-Deal estimator of m? is developed, and a multiple comparison procedure based on this confidence region is outlined. Necessary percentile points for constructing the confidence region are given for the two-sample case. For more than two samples, a convenient method of approximating the percentile points is suggested. Also, a numerical example is presented to illustrate the methods. Further, for the bivariate case, the proposed confidence region and the ones based on individual samples are compared numerically with respect to their expected areas. The numerical results indicate that the new confidence region is preferable to the single-sample versions for practical use.  相似文献   

4.
ABSTRACT

In this paper, we consider the problem of constructing non parametric confidence intervals for the mean of a positively skewed distribution. We suggest calibrated, smoothed bootstrap upper and lower percentile confidence intervals. For the theoretical properties, we show that the proposed one-sided confidence intervals have coverage probability α + O(n? 3/2). This is an improvement upon the traditional bootstrap confidence intervals in terms of coverage probability. A version smoothed approach is also considered for constructing a two-sided confidence interval and its theoretical properties are also studied. A simulation study is performed to illustrate the performance of our confidence interval methods. We then apply the methods to a real data set.  相似文献   

5.
This article describes a comparison among four bootstrap methods: the percentile, reflective, bootstrap-t, and variance stabilized bootstrap-t using a simple new stabilization procedure. The four methods are employed in constructing upper confidence bounds for the mean error in a wide variety of audit populations. The simulation results indicate that the variance stabilized bootstrap-t bound is to be preferred. It exhibits reliable coverage while maintaining reasonable tightness.  相似文献   

6.
This article explores the calculation of tolerance limits for the Poisson regression model based on the profile likelihood methodology and small-sample asymptotic corrections to improve the coverage probability performance. The data consist of n counts, where the mean or expected rate depends upon covariates via the log regression function. This article evaluated upper tolerance limits as a function of covariates. The upper tolerance limits are obtained from upper confidence limits of the mean. To compute upper confidence limits the following methodologies were considered: likelihood based asymptotic methods, small-sample asymptotic methods to improve the likelihood based methodology, and the delta method. Two applications are discussed: one application relating to defects in semiconductor wafers due to plasma etching and the other examining the number of surface faults in upper seams of coal mines. All three methodologies are illustrated for the two applications.  相似文献   

7.
Highly skewed and non-negative data can often be modeled by the delta-lognormal distribution in fisheries research. However, the coverage probabilities of extant interval estimation procedures are less satisfactory in small sample sizes and highly skewed data. We propose a heuristic method of estimating confidence intervals for the mean of the delta-lognormal distribution. This heuristic method is an estimation based on asymptotic generalized pivotal quantity to construct generalized confidence interval for the mean of the delta-lognormal distribution. Simulation results show that the proposed interval estimation procedure yields satisfactory coverage probabilities, expected interval lengths and reasonable relative biases. Finally, the proposed method is employed in red cod densities data for a demonstration.  相似文献   

8.
The problem of estimating the difference between two Poisson means is considered. A new moment confidence interval (CI), and a fiducial CI for the difference between the means are proposed. The moment CI is simple to compute, and it specializes to the classical Wald CI when the sample sizes are equal. Numerical studies indicate that the moment CI offers improvement over the Wald CI when the sample sizes are different. Exact properties of the CIs based on the moment, fiducial and hybrid methods are evaluated numerically. Our numerical study indicates that the hybrid and fiducial CIs are in general comparable, and the moment CI seems to be the best when the expected total counts from both distributions are two or more. The interval estimation procedures are illustrated using two examples.  相似文献   

9.
In this article, the problem of testing the equality of coefficients of variation in a multivariate normal population is considered, and an asymptotic approach and a generalized p-value approach based on the concepts of generalized test variable are proposed. Monte Carlo simulation studies show that the proposed generalized p-value test has good empirical sizes, and it is better than the asymptotic approach. In addition, the problem of hypothesis testing and confidence interval for the common coefficient variation of a multivariate normal population are considered, and a generalized p-value and a generalized confidence interval are proposed. Using Monte Carlo simulation, we find that the coverage probabilities and expected lengths of this generalized confidence interval are satisfactory, and the empirical sizes of the generalized p-value are close to nominal level. We illustrate our approaches using a real data.  相似文献   

10.
In this article, an unbalanced one-way random effects model is considered for the log-transformed shift-long exposure measurements. Exact test and confidence interval for the proportion of workers whose mean exposure exceeds the occupational exposure limit are developed based on the concepts of generalized p-value and generalized confidence interval. Some simulation results to compare the performance of the proposed test with that of the existing method are reported. The simulation results indicate that the proposed method appears to have significant gain in the size and power.  相似文献   

11.
The Hotelling's T2statistic has been used in constructing a multivariate control chart for individual observations. In Phase II operations, the distribution of the T2statistic is related to the F distribution provided the underlying population is multivariate normal. Thus, the upper control limit (UCL) is proportional to a percentile of the F distribution. However, if the process data show sufficient evidence of a marked departure from multivariate normality, the UCL based on the F distribution may be very inaccurate. In such situations, it will usually be helpful to determine the UCL based on the percentile of the estimated distribution for T2. In this paper, we use a kernel smoothing technique to estimate the distribution of the T2statistic as well as of the UCL of the T2chart, when the process data are taken from a multivariate non-normal distribution. Through simulations, we examine the sample size requirement and the in-control average run length of the T2control chart for sample observations taken from a multivariate exponential distribution. The paper focuses on the Phase II situation with individual observations.  相似文献   

12.
如何解决网络访问固定样本调查的统计推断问题,是大数据背景下网络调查面临的严重挑战。针对此问题,提出将网络访问固定样本的调查样本与概率样本结合,利用倾向得分逆加权和加权组调整构造伪权数来估计目标总体,进一步采用基于有放回概率抽样的Vwr方法、基于广义回归估计的Vgreg方法与Jackknife方法来估计方差,并比较不同方法估计的效果。研究表明:无论概率样本的样本量较大还是较小,本研究所提出的总体均值估计方法效果较好,并且在方差估计中Jackknife方法的估计效果最好。  相似文献   

13.
Random coefficient regression models have been used to analyze cross-sectional and longitudinal data in economics and growth-curve data from biological and agricultural experiments. In the literature several estimators, including the ordinary least squares and the estimated generalized least squares (EGLS), have been considered for estimating the parameters of the mean model. Based on the asymptotic properties of the EGLS estimators, test statistics have been proposed for testing linear hypotheses involving the parameters of the mean model. An alternative estimator, the simple mean of the individual regression coefficients, provides estimation and hypothesis-testing procedures that are simple to compute and teach. The large sample properties of this simple estimator are shown to be similar to that of the EGLS estimator. The performance of the proposed estimator is compared with that of the existing estimators by Monte Carlo simulation.  相似文献   

14.
In this article, the generalized linear model for longitudinal data is studied. A generalized empirical likelihood method is proposed by combining generalized estimating equations and quadratic inference functions based on the working correlation matrix. It is proved that the proposed generalized empirical likelihood ratios are asymptotically chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. In addition, the maximum empirical likelihood estimates of parameters are obtained, and their asymptotic normalities are proved. Some simulations are undertaken to compare the generalized empirical likelihood and normal approximation-based method in terms of coverage accuracies and average areas/lengths of confidence regions/intervals. An example of a real data is used for illustrating our methods.  相似文献   

15.
The hypothesis testing and interval estimation are considered for the common mean of several normal populations when the variances are unknown and possibly unequal. A new generalized pivotal is proposed based on the best linear unbiased estimator of the common mean and the generalized inference. An exact confidence interval for the common mean is also derived. The generalized confidence interval is illustrated with two numerical examples. The merits of the proposed method are numerically compared with those of the existing methods with respect to their expected lengths, coverage probabilities and powers under different scenarios.  相似文献   

16.
Recently, Shabbir and Gupta [Shabbir, J. and Gupta, S. (2011). On estimating finite population mean in simple and stratified random sampling. Communications in Statistics-Theory and Methods, 40(2), 199–212] defined a class of ratio type exponential estimators of population mean under a very specific linear transformation of auxiliary variable. In the present article, we propose a generalized class of ratio type exponential estimators of population mean in simple random sampling under a very general linear transformation of auxiliary variable. Shabbir and Gupta's [Shabbir, J. and Gupta, S. (2011). On estimating finite population mean in simple and stratified random sampling. Communications in Statistics-Theory and Methods, 40(2), 199–212] class of estimators is a particular member of our proposed class of estimators. It has been found that the optimal estimator of our proposed generalized class of estimators is always more efficient than almost all the existing estimators defined under the same situations. Moreover, in comparison to a few existing estimators, our proposed estimator becomes more efficient under some simple conditions. Theoretical results obtained in the article have been verified by taking a numerical illustration. Finally, a simulation study has been carried out to see the relative performance of our proposed estimator with respect to some existing estimators which are less efficient under certain conditions as compared to the proposed estimator.  相似文献   

17.
This article focuses on the estimation of percentile residual life function with left-truncated and right-censored data. Asymptotic normality and a pointwise confidence interval that does not require estimating the unknown underlying distribution function of the proposed empirical estimator are obtained. Some simulation studies and a real data example are used to illustrate our results.  相似文献   

18.
One of the indicators for evaluating the capability of a process is the process capability index. In this article, bootstrap confidence intervals of the generalized process capability index (GPCI) proposed by Maiti et al. are studied through simulation, when the underlying distributions are Lindley and Power Lindley distributions. The maximum likelihood method is used to estimate the parameters of the models. Three bootstrap confidence intervals namely, standard bootstrap (SB), percentile bootstrap (PB), and bias-corrected percentile bootstrap (BCPB) are considered for obtaining confidence intervals of GPCI. A Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average width of the bootstrap confidence intervals. Simulation results show that the estimated coverage probabilities of the percentile bootstrap confidence interval and the bias-corrected percentile bootstrap confidence interval get closer to the nominal confidence level than those of the standard bootstrap confidence interval. Finally, three real datasets are analyzed for illustrative purposes.  相似文献   

19.
A ranked sampling procedure with random subsamples is proposed to estimate the population mean. Four methods of obtaining random subsamples are described. Several estimators of the mean of the population based on random subsamples in ranked set sampling are proposed. These estimators are compared with the mean of a simple random sample for estimating the mean of symmetric and skew distributions. Extensive simulation under several subsampling distributions, sample sizes, and symmetric and skew distributions shows that the estimators of the mean based on random subsamples are more accurate than existing methods.  相似文献   

20.
The problem of estimating the difference between two binomial proportions is considered. Closed-form approximate confidence intervals (CIs) and a fiducial CI for the difference between proportions are proposed. The approximate CIs are simple to compute, and they perform better than the classical Wald CI in terms of coverage probabilities and precision. Numerical studies indicate that these approximate CIs can be used safely for practical applications under a simple condition. The fiducial CI is more accurate than the approximate CIs in terms of coverage probabilities. The fiducial CIs, the Newcombe CIs, and the Miettinen–Nurminen CIs are comparable in terms of coverage probabilities and precision. The interval estimation procedures are illustrated using two examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号